Simulation Techniques of the ADAS Perception Sensors: Review

Daniel Turcian 1*, Valer Dolga 1

1 Politehnica University of Timișoara, Faculty of Mechanical Engineering
Bv. Mihai Viteazul, No. 1, 300222 Timişoara, Romania
* Corresponding author. E-mail:

Robotica & Management, Vol. 26, No. 2, pp. 43-48

Abstract: Sensors play a vital role in the perception system for autonomous driving. The development of these systems requires prototyping, testing, and validation of the concept at a low cost and in a safe condition. Simulation is the perfect tool for this role. In this paper, we analyze some possibilities to simulate the most relevant sensor of the perception system.

Keywords: camera, radar, LiDAR, ultrasonic, GNSS.

Full text


[1] Okuda R., Kajiwara Y., Terashima K.: “A survey of technical trend of ADAS and autonomous driving”, Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, pp. 1-4, 2014.

[2] Tran L.A., Do T.D., Park D.C., Le M.H.: “Robustness Enhancement of Object Detection in Advanced Driver Assistance Systems (ADAS)”, 2021

[3] Aparicio A., Cieslik I., Stoll J., Kunert M., Flohr F., Arbitmann M., Wimmer T., Bräutigan J., Gavrila D.: “Advancing Active Safety towards the Protection of Vulnerable Road Users by Evolution of ADAS Solutions that Meet Real-World Deployment Challenges: The Project PROSPECT”, Transport Research Arena 2018 (TRA 2018), Austria, 2018.

[4] Han C., Yang J., Li M.: “Robust cruise control of heterogeneous connected vehicle systems”, 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 2018.

[5] Leveson N.: “Adaptive Cruise Control System Overwiev”, 5th Meeting of the U.S. Software System Safety Working Group April 12th-14th 2005, Anaheim, California USA, 2005

[6] Tan H., Zhao F., Hao H., Liu Z., Amer A.A., Babiker H.: “Automatic Emergency Braking (AEB) system impact on fatality and injury reduction in China”, Int. J. Environ. Res. Public Health 17(3), 2020.

[7] Li G., Yang Y., Zhang T., Qu X., Cao D., Cheng B., Li. K.: “Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios”, Transportation Research Part C: Emerging Technologies, Volume 122, 2021.

[8] Soyeon L., Jeong B., Park K., Song M., Kim S.Y.: “On-CMOS Image Sensor Processing for Lane Detection” Sensors 21, no. 11: 3713, 2021.

[9] Heng L.: “Project AutoVision: Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System”, 2019 International Conference on Robotics and Automation (ICRA), pp. 4695-4702, 2019.

[10] Zhaohua L., Bochao G.: “Radar Sensors in Automatic Driving Cars”, 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), pp. 239-242, 2020.

[11] Vehmas R., Neuberger N.: “Inverse Synthetic Aperture Radar Imaging: A Historical Perspective and State-of-the-Art Survey”, IEEE Access, vol. 9, pp. 113917-113943, 2021.

[12] Kutila M., Pyykönen P., Ritter W., Sawade O., Schäufele B.: “Automotive LIDAR sensor development scenarios for harsh weather conditions”, Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on (pp. 265-270), 2016.

[13] Roriz R., Cabral J., Gomes T.: “Automotive LiDAR Technology: A Survey”, IEEE Transactions on Intelligent Transportation Systems, 2021.

[14] Stiawan R.: “An Ultrasonic Sensor System for Vehicle Detection Application”, IOP Conf. Series: Journal of Physics: Conf. Series 1204, 2019.

[15] Jin Y., Li S., Li J., Sun H., Wu Y.: “Design of an Intelligent Active Obstacle Avoidance Car Based on Rotating Ultrasonic Sensors”, 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2018, pp. 753-757, 2018.

[16] Mamoun A.H., Saadeddin K., Al Jarrah M.: “Estimating Vehicle State by GPS/IMU Fusion with Vehicle Dynamics”, Journal of Intelligent and Robotic Systems, 2014.

[17] Song X., Ling Y., Cao H., Huang Z.: “Cooperative vehicle localisation method based on the fusion of GPS, inter-vehicle distance, and bearing angle measurements”, IET Intell. Transp. Syst., 13: 644-653, 2018.

[18] Monaghan M.: “dSPACE: supplying in-lab GPS simulation system to DOT/NHTSA”, Automotive Engineering (, 2014

[19] Siggins A., Newnham G., Blanch R., Leonard J.: “A 3 dimensional ray tracing approach to modelling bushfire radiant heat flux for houses using LiDar derived vegetation voxel data and quadratic polygonal fire fronts”, 2013 IEEE International Geoscience and Remote Sensing Symposium – IGARSS, 2013, pp. 97-100, 2013.

[20] Hurl B., Czarnecki K., Waslander S.: “Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception”, 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 2522-2529, 2019.

[21] Rosenberger P.: “Benchmarking and Functional Decomposition of Automotive Lidar Sensor Models”, 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 632-639, 2019.

[22] Al-Hourani A., Evans R., Farrell P., Moran B., Martorella M., Sithamparanathan K., Skafidas S., Parampalli U.: “Millimeter-wave Integrated Radar Systems and Techniques”, 2017.

[23] Papoutsidakis M., Psomopoulos C., Ioannidis G.C., Tseles D.: “Motion Sensors and Transducers to Navigate an Intelligent Mechatronic Platform for Outdoor Applications”, Sensors and Transducers. Pp.16-24, 2016.

[24] Venugopalan V., Kannan S.: “Accelerating real-time LiDAR data processing using GPUs”, Midwest Symposium on Circuits and Systems, 1168-1171, 2013.

[25] Liu Y., Li S., Fu Q., Liu Z.: “Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System”, Sensors 2018, 18, 2018.

[26] Von Neumann-Cosel K., Roth E., Lehmann D., Speth J., Knoll A.: “Testing of Image Processing Algorithms on Synthetic Data”, 2009 Fourth International Conference on Software Engineering Advances, 2009, pp. 169-172, 2009

[27] Reway F., Huber W., Ribeiro E.P.: “Test Methodology for Vision-Based ADAS Algorithms with an Automotive Camera-in-the-Loop”, 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 1-7, 2018.

[28] dSPACE: “Closed-Loop HIL System for Testing Camera-Based Systems by Inserting Data into the Image Sensor Output”,; last accessed December 2021

[29] Rafieinia F., Haghighi K.: “ASGARDI: A Novel Frequency-based Automotive Radar Target Simulator”, 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pp. 1-4, 2020.

[30] Maier F.M., Makkapati V.P., Horn M.: “Environment perception simulation for radar stimulation in automated driving function testing”, Elektrotech. Inftech. 135, 309–315, 2018.

[31] Gadringer M., Schreiber H., Gruber A., Vorderderfler M., Amschl D., Bösch W., Metzner S., Pfluegl H., Paulweber M.: “Virtual reality for automotive radars”, e & i Elektrotechnik und Informationstechnik. 2018.

[32] dSPACE: “Automotive Radar Test Systems (DARTS)”,, last accessed December 2021.

[33] Yang L., Feng X., Zhang J., Shu. Multi-Ray X.: “Modeling of Ultrasonic Sensors and Application for Micro-UAV Localization in Indoor Environments”, Sensors 19, no. 8, 2019.

[34] Bilgin A.: “A simulation model of indoor environments for ultrasonic sensors”, Bilkent University, 2003.

[35] dSPACE: “Simulation Model for Ultrasonic Sensors”,, last accessed date December 2021.

[36] Fang J.: “Augmented LiDAR Simulator for Autonomous Driving”, IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1931-1938, 2020.

[37] Mok S., Kim G.: “Simulated Intensity Rendering of 3D LiDAR using Generative Adversarial Network”, 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 295-297, 2021.

[38] Vacek P., Jašek O., Zimmermann K., Svoboda T.: “Learning to Predict Lidar Intensities”, IEEE Transactions on Intelligent Transportation Systems, 2020.

[39] Rosenberger P.: “Benchmarking and Functional Decomposition of Automotive Lidar Sensor Models”, 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 632-639, 2019.

[40] Hofmann-Wellenhof B.: “Elementary Mathematical Models for GNSS Positioning”, Freeden W. (eds) Mathematische Geodäsie/Mathematical GeodesyBerlin, 2020.

[41] Saadeddin K., Abdel-Hafez M.F., Jarrah M.A.: “Estimating Vehicle State by GPS/IMU Fusion with Vehicle Dynamics”, J. Intell. Robotics Syst. 74, 1–2, 147–172, 2014.

[42] Turcian D., Dolga V., Turcian D., Moldovan C.. “Fusion Sensors Experiment for Active Cruise Control”, New Advances in Mechanisms, Mechanical Transmissions and Robotics. MTM&Robotics 2020. Mechanisms and Machine Science, vol 88. Springer, 2020.