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Abstract: In this paper, we apply genetic algorithm (GA) to optimize LQR controller – a linear control algorithm which 

stability is guaranteed by mathematics. This searching algorithm proves its ability in finding better control parameters 

through generations. Our model is ball and beam (B&B) – a classical single input – multi output (SIMO) system. This 

system is balanced around equilibrium point in simulation. 
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1. Introduction 

B&B is a SIMO object that is suitable for 

algorithm development since it has a traditional 

nonlinear structure and an easy-to-produce mechanical 

structure. There are two different types of B&B: those 

with central axes, in which the motor is located in the 

center of the beam, and those with side axes, in which 

the motor is transferred to one side of the beam by a 

plate. The system directs the beam to move until the ball 

is in the desired position while maintaining equilibrium 

at that location. On an actual model that I constructed 

myself, experimental research is examined. Therefore, a 

reference to this model is required for subsequent studies 

to expand our understanding of control for this type of 

SIMO system.  

Some authors [1] control B&B using 

reinforcement learning in both simulation and 

experiment. However, that research lacked knowledge 

about the dynamic equations of a genuine model. Fuzzy 

controllers [3], neural controllers [5]-[10], and SMC 

technique [6] are examples of intelligent controllers that 

have undergone thorough testing. However, complexity 

controllers have a harder time being applied to real 

models since they require more time and memory. In [2], 

GA is utilized to improve PID controllers for B&B. As a 

result, a good set of control parameters can control a 

system, but theoretically, system stability is not assured. 

In simulation, LQR for B&B is optimized via GA [4]. 

Along with PID, pole-placement, and the success of all 

methods in simulation, LQR control is described in [9]. 

However, an attempt using home-made hardware is 

unsuccessful. In both simulation and experiment, the 

LQR controller has been shown to be effective [8]. In 

that study, Q and R are chosen via a trial-and-error 

technique. Additionally, LQR optimization method is not 

demonstrated in that study. There are suggested LQR 

calibration guidelines for B&B in [7]. The quality 

control of the system will be impacted by modifications 

to each element in the matrices Q and R. However, 

selecting an effective set of control parameters takes 

time.  

2. Theoretical Basis 

2.1. Mathematical Model with Torque as Input 

 
Fig. 1. B&B system's mathematical model 

Tab. 1 Parameters of model system 

Parameter Description Values 
m  The ball's weight 0.09 kg 

M  
The beam's mass 0.45kg 

L  
Dimensions of beam 0.37 m 

R  The ball's circumference  0.2 m 

p  Position of the ball on beam, 

relative to the beam axis  

m 

  Beam angle with relation to 

the horizontal 

rad 

  Torque generated by motor, 

applying on the beam 

Nm 

u  motor voltage supply, the 

control signal 

V 

  velocity of the beam rad/s 

p  velocity of the ball m/s 
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Ball's potential energy is: 

sinbp mgp =  (1) 

Potential energy of the beam is: 

0Bp =  (2) 

 From (1) and (2), total system potential energy is: 

sinb BP p p mgp = + =  (3) 

Beam’s kinetic energy is: 

21

2
B BT J =

 

(4)
 

 Ball's kinetic energy as it rotates around itself is: 

2

_ _1

1

2
b roll b bT J =  

(5) 

Rotational kinetic energy of the ball when it 

rotates around the beam axis is: 

2

_ _ 2 _ _ 2

1

2
b roll b rollT J p=  

(6) 

The ball's translational kinetic energy is: 

2

_

1

2
b translationalT mp=  

(7) 

From (5) - (7), total kinetic energy of ball is: 

_ _b b translational b rollT T T= +  (8) 

From (4), (8), total kinetic energy of system is: 

b BT T T= +  (9) 

From (3) and (9), Lagrange operator is: 

21
sin

2
L T P mp mgp = − = +  

(10) 

Euler-Lagrange technique states are: 

0
d L L

dt p p

  
− = 

  

 
(11) 

where
2

2
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bJd L
m p
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L
mp mg
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= +  

  

 = −
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d L L

dt
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2( )

2 cos

B

d L
mp J
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L
pp mgp




 


  
= +   


 = −



  

Thence, dynamic equations of B&B are: 

2

2
( ) sin 0bJ
m p mp mg

R
 + − + =  

(12) 

2

2

sin

b

mp mg
p

J
m

R

 −
 =

+  

(13) 

Thence, we obtain: 
2( )  -  2   cosBmp J pp mgp   + + =  (14) 

2

- 2  cos

B

pp mgp

mp J

  


+
 =

+  

(15) 

From (13) and (15), mathematical equations of 

system with torque as input is described below:  

2

2

2

- 2  cos

sin

B

b

pp mgp

mp J

mp mg
p

J
m

R

  


 

 +
=

+
 −

=
 +


 

(16) 

2.2. Mathematical Model with Voltage as Input 

 
Fig. 2. DC motor's mathematical description 

Tab. 2. DC motor parameters 

Parameter Description Value 

mR
 

Motor resistance Ω 

tK
 

Constant torque Nm/A 

bK
 

Constant of the back 

electromotive force 

V/(rad/sec) 

mL  Inductance coefficient H 

mJ  Rotor moment of 

inertia 

kgm2 

mC  Coefficient of 

viscosity 

Nm/(rad/sec)) 

1  Resistance torque  Nm 

fT  Friction moment Nm 

  Speed of motor  rad/s 

m  Internal torque  Nm 

m  Rotation angle of 

motor shaft 

rad 

Electrical dynamic equation: 

m m b m m b

di di
e L R i E L R i K

dt dt
= + + = + +  

(17) 

Mechanical dynamic equation: 

1 1 1m m f m f m

d
J T C K i T C

dt


    = − + − = − + −  

(18) 

Resistance torque: 

1
b

m m m m t m

m

e Kd
J C J K C

dt R


    

−
= − + + = − + +  

(19) 

In this paper,  is chosen as 1 , then, (19) is 

rewritten as follows: 
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3 2 1k k k e  = − − +  (20) 

where 1 2 3,  ,  t b t
m m

m m

k k k
k k C k J

R R
= = + =    

Substituting (20) into (16), we obtain 

2 1

2 3

2

2

( )( 1)B

B

k k e mp gmpcos

k
mp J

m

p

p J

 


− − + +

+

=

+
+

 

(21) 

The mathematical equations of system are 

described below:  

2 1

2 3

2

2

2

2

( )(

sin

1)
B

b

B

k k e mp mgpcos

k
mp J

mp

J

J

p

mp mg
p

m
R

 


 


=





−
=

+

− − + +

+ +
+



 

(22) 

where 1
t

m

k
k

R
= ; 2

b t
m

m

k k
k C

R
= + ; 

3 mk J= ; 
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12
B BJ L m= ; 

22

5
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From (26) the mathematical equation of system 

( ) ( )x f x g x u= +  (23) 
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3. Genetic Algorithm  

 

With dynamic equations in (23), LQR control 

signal for B&B is 

u Kx= −  (24) 

This signal can be lanced system around 

equilibrium point  

x=x0=[0]; u=u0=0 (25) 

Matrix K is control matrix which is calculated 

from Matlab as: 

K=lqr(A,B,Q,R) (26) 

Matrices A, B are calculated by: 

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

4 4 4 4

1 2 3 4 0

0

f f f f

x x x x

f f f f

x x x x
A

f f f f

x x x x

f f f f

x x x x x x
u u

    
    
 
    
    
 =
    
 
    
    
 
    = 

=

; 

 1 2 3 4

T
B g g g g=  

(27) 

Matrices Q, R can be chosen through GA.  GA 

which is used to optimize the LQR is described in this 

section. The four components 1 2 3 4, , ,K K K K  of the 

matrix K that are have been chosen as the controller's 

inputs and outputs.  

The following is the choice of the objective function 

2 2

1 21
( )

n
J e e= +  

(28) 

where: 1e  is the error between ( )dp t desired and ( )p t  

current; 2e  is the discrepancy between ( )d t  intended 

and ( )t  current; n  is the number of samples used in 

each simulation.. 

The most appropriate population size was initially 

identified by running a number of simulations. A 

measurement cycle of 500 generations was looked at, 

with populations ranging from 2 to 50 individuals. 

Tab. 3. Population size identification  

using GA-Related Parameters 
GA component Value 

Maximum generation 500 

Mutation rate 0.1 

Crossover rate 0.9 

 The average aim of each run reduces 

until it achieves its local maximum because the GA 

selection process includes more potential candidates with 

favorable genes as population size rises. 

 
Fig. 3. Population size and average object function value 

in 500 generation 
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A large number of runs with crossover 

probabilities between 0.1 and 0.9. It is evident that as the 

crossover rate increases from 0.1 to 0.2, the average 

objective function value of each run lowers significantly. 

It can be explained by the possibility that crossover 

processes will preserve the better genes from the 

ancestors of the parents in order to enhance the 

performance of following generations. The crossover 

probability position was 0.9 when the average target 

reached its peak. 

Tab. 4. Crossover rate detection  

using GA-Related Parameters 
GA component Value 

Maximum generation 500 

Mutation rate 0.1 

Population size 26 

 
Fig. 4. Probability of crossover in 500 generations when 

population is 26 

The population size selected was 26, and the 

crossover probability position was adjusted to 0.9, as 

shown in Fig. 4. Fig. 5 illustrates the process of choosing 

the appropriate mutation probability by plotting the best 

average objective function value of each run at various 

mutation probabilities. 

Tab. 5. GA-Related variables  

determining the rate of mutation 

GA component Value 

Maximum generation 500 

Mutation rate 0.9 

Population size 26 

 
Fig. 5. Probability of mutation in 500 generations with a 

population size of 26 

Tab. 6. GA-Related parameters of system 

GA component Value 

Population size 26 

Chromosome count for each 

individual 

4 

Max generation 500 

Mutation rate 0.06 

Crossover rate 0.9 

GA programs calculate the outcome after roughly 

500 generations. The value of the objective function is 

then displayed in Fig. 6 after that. 

 
Fig. 6. Objective function value in 500 generations  

4. Results 

This chapter shows the simulation and experiment 

results. Initial values of system are as follows:

    1 2 3 4    0.15 0    0 0
TT T

x x x x x p p   = = = − 
(29) 

The beam is horizontally balanced, and the ball is 

far from the static operating point. 

 
Fig. 7. Ball position simulation at the 98th generation 

results 

Tab. 7. Post-tuning performance parameters  
of ball position at the 98th generation 

 POT (%) Settling time 

(s) 

Steady state 

error (m) 

Rise time 

(s) 

Peak time 

(s) 

144.6 11.27 0 0.3189 1.12 

 The ball's position's settling time in Fig. 7 is 

11.27 seconds. The ball's position oscillates between 

0.245 m and -0.15 m in height. 

 
Fig. 8. Ball position error simulation at the 98th 

generation results 

After 11.27 seconds, the ball's position inaccuracy 

in Fig. 8 is equal to zero. 
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Fig. 9 The 98th generation's beam angle as predicted via 

simulation 

Tab. 8. Post-tuning performance parameters 

 of beam angle at 98th generation 
POT (%) Settling time 

(s) 
Steady state 

error (m) 
Rise time 

(s) 
Peak time 

(s) 

Ø 12.94 0 Ø 1.06 

The beam angle's settling time in Fig. 9 is 11.8 

seconds. The angle of the beam oscillates between  

-0.3224 rad and 0.1703 rad in amplitude. 

 
Fig. 10. Ball position simulation at the 105th generation 

results 

Tab. 9. Post-tuning performance parameters 

 of ball position at 105th generation 
POT (%) Settling time 

(s) 
Steady state 

error (m) 
Rise time 

(s) 
Peak time 

(s) 

20 6.88 0 0.483 1.12 

The ball's position in Fig. 10 settled after 6.88 s. 

The ball's position oscillates between 0.12 m and -0.15 

m in height. 

 
Fig. 11. Ball position error simulation at the 105th 

generation results 

After 6.88 seconds, the ball's position inaccuracy 

in Fig. 11 is equal to zero. 

 

Fig. 12. The 105th generation’s beam angle as predicted 

via simulation 

Tab. 10. Post-tuning performance parameters  
of beam’s angle at 105th generation 

POT (%) Settling time 
(s) 

Steady state 
error (m) 

Rise time 
(s) 

Peak time 
(s) 

Ø 11.8 0 Ø 7.8 

The beam angle's settling time in Fig. 12 is 6.36 s. 

The angle of the beam oscillates between -0.188 rad and 

0.0476 rad in amplitude. 

 
Fig. 13. 347th generation simulation result for ball 

position 

Tab. 11. Post-tuning performance parameters 

 of beam angle at 347th generation 
POT (%) Settling time 

(s) 

Steady state 

error (m) 

Rise time 

(s) 

Peak time 

(s) 

9.4 6.01 0 0.89 1.95 

The ball's position in Fig. 13 settled in 6.01 s. The 

position of the ball oscillates between 0.1094 m and -

0.15 m in amplitude. 

 
Fig. 14. 347th generation simulation result for the ball's 

location error 

After 6.01 seconds, the ball's position inaccuracy 

in Fig. 14 is equal to zero. 
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Fig. 15. Simulation result for beam’s angle at the 347th 

generation 

Tab. 12. Post-tuning performance parameters  
of beam angle at 347th generation 

POT (%) Settling time 
(s) 

Steady state 
error (m) 

Rise time 
(s) 

Peak time 
(s) 

Ø 6.36 0 Ø 1.01 

In Fig. 15, the beam angle's settling time is 12.53 

s. The beam's angle oscillates with an amplitude ranging 

from -0.018 rad to 0.004 rad.. 

 
Fig. 16. Simulation result for ball’s position at the 412th 

generation 

Tab. 13. Post-tuning performance parameters 

 of beam angle at 412th generation 
POT (%) Settling time 

(s) 

Steady state 

error (m) 

Rise time 

(s) 

Peak 

time (s) 

0 12.88 0 5.61 Ø 

The ball's position in Fig. 16 settled in 12.88 s. 

The ball's position oscillates between 0.1 m and -0.15 m. 

 
Fig. 17. The 412th generation's simulation result for 

ball's location error  

After 12.88 seconds, the ball's position inaccuracy 

in Fig. 17 is equal to zero. 

 
Fig. 18. Simulation result for beam’s angle at 412th 

generation 

Tab. 14. Post-tuning performance parameters 

 of beam’s angle at 412th generation 
POT (%) Settling time 

(s) 
Steady state 

error (m) 
Rise time 

(s) 
Peak time 

(s) 

Ø 12.53 0 Ø 1.95 

The beam angle's settling time in Fig. 18 is 12.53 

s. The angle of the beam oscillates between -0.018 rad 

and 0.004 rad in amplitude. 

 
Fig. 19. Ball position simulation at the 430th generation 

results 

Tab. 15. Post-tuning performance parameters  
of beam angle at 430th generation 

POT (%) Settling time 

(s) 

Steady state 

error 

Rise time 

(s) 

Peak time 

(s) 

0 12.8 0 56.2 Ø 

Ball's position in Fig. 19 settled after 12.8 s. The 

ball's position oscillates between 0.1 and -0.15 meters. 

 
Fig. 20. Ball position error simulation at 430th 

generation results 

After 12.8 seconds in Fig. 20, the ball's location 

error reaches zero. 



 

 

 Application of Genetic Algorithm in Optimizing LQR Control for Ball and Beam  

Robotica  Management, 28-2 / 2023 

54 

 
Fig. 21. Simulation result for beam’s angle at 430th 

generation 

Tab. 16. Post-tuning performance parameters  
of beam’s angle at 430th generation 

POT 

(%) 

Settling 

time (s) 

Steady 

state error 

Rise 

time (s) 

Peak 

time (s) 

Ø 12.44 0 Ø 1.89 

Beam angle's settling time in Fig. 21 is 12.44 s. 

Angle oscillations range from -0.011 rad to 0.002 rad in 

amplitude. 

5. Conclusions 

Through the study, the preparations is 

demonstrated such as: building the system of dynamic 

equations of the BTTG system with the input voltage, 

proving the controllability of the system, creating the 

basis for building the system's stable condition at a static 

working point, presenting the mathematical structure of 

an LQR conditional and how to quickly calculate control 

parameters through Matlab tool, building experimental 

model of B&B, applying GA to optimize LQR on 

simulation to confirm the successful optimization of GA 

for LQR algorithm, demonstrating the optimization of 

GA in the optimization of LQR conditionals 

experimentally, bring the analysis and survey of 

optimization using GA to LQR in this case. 
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