

Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart

Robotica Management, 28-2 / 2023

14

APPLYING DDPG ALGORITHM TO SWING-UP AND BALANCE

CONTROL FOR A DOUBLE INVERTED PENDULUM ON A CART

Trong-Nguyen Ho1,*, Thanh-Sang Tat2, Hoang-Anh Ngo2, Truong-Son Nguyen2,

Duc-Anh Bui2, Thanh-Trung Le2, Vu-Loc Le2, Lac-Thien Huynh2

1 Onsemi Viet Nam

17A, No.10, Bien Hoa City, Dong Nai Province, 810000, Viet Nam

2 Ho Chi Minh City University of Technology and Education

Vo Van Ngan St., No. 01, Thu Duc City, Ho Chi Minh City, 700000, Vietnam

* Corresponding author. E-mail: nguyen.ho@email.com

Abstract: In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning

to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The

simulation results demonstrate DDPG's stability and effectiveness in achieving swing-up and balance, showing its

potential for tackling challenging control tasks in robotics.

Keywords: Reinforcement learning, DDPG, double inverted pendulum on a cart, swing-up, balance.

1. Introduction

In the field of control engineering, applying

optimal control methods yields high efficiency but

demands knowledge of the system and the ability to

construct the system's mathematical equations. This poses

challenges, particularly for highly complex systems, those

operating in noisy environments, subject to environmental

influences, or with high manufacturing inaccuracies in

mechanical systems. An effective alternative approach in

such cases is the application of machine learning methods,

allowing the system to autonomously learn how to control

itself without requiring in-depth knowledge of the system,

while also enhancing the system's adaptability to its

environment.

Reinforcement Learning (RL) is a machine

learning subfield that trains systems to make decisions for

achieving optimal outcomes through trial-and-error

interactions with the environment, without human

intervention. Recent advancements in RL have expanded

its application to various control problems, such as

AlphaGo and AlphaZero in games, autonomous driving,

and game management, offering new opportunities for

self-learning and adaptation in real-world scenarios.

The primary goal of RL is to train an agent to

perform tasks in an unfamiliar environment. The agent

receives observations and rewards from the environment

and responds by taking actions, with the reward serving

as a measure of the action's success in achieving the task's

objective.

This paper specifically focuses on the application

of the Deep Deterministic Policy Gradients (DDPG)

algorithm, DDPG is designed for solving continuous

action space problems in which an agent learns to interact

with an environment by taking actions to maximize

cumulative rewards. It combines elements of both actor-

critic methods and deep neural networks to find optimal

policies for continuous control tasks. It has shown success

in various applications, including autonomous driving and

robot control. In this study, we employ the DDPG

algorithm to control the balance of a double inverted

pendulum system mounted on a cart, renowned for its

high instability, strong nonlinearity, and chaotic behavior.

Our evaluation of the control method is conducted within

a simulated environment using MATLAB.

2. Deep Deterministic Policy Gradients

2.1. Background

Reinforcement learning is a computer-based approach

in which a machine learns to perform tasks by interacting with

an unknown environment, aiming to maximize the total amount

of rewards or cumulative reward through decision-making

without human intervention and without being explicitly

programmed to achieve the task.

The objective of reinforcement learning is to train an

agent to acquire an optimal or nearly optimal policy that

maximizes the reward function or another reinforcement signal

provided by the user, which is constructed from immediate

rewards. The agent interacts with the environment, receiving

feedback in the form of observations and rewards, and sends

actions to the environment. Rewards indicate the level of

success in completing the task.

Deep Deterministic Policy Gradient (DDPG) is a

reinforcement learning algorithm designed to tackle challenges

in environments with continuous action spaces. It combines

concepts from policy-based methods and value-based methods

to efficiently learn policies for tasks with continuous control.

The algorithm employs a policy network (actor) for selecting

actions and a value function (critic) for evaluating those actions.

Ho T.N., Tat T.S., Ngo H.A., Nguyen T.S., Bui D.A., Le T.T., Le V.L., Huynh L.T.

Robotica Management, 28-2 / 2023

15

DDPG incorporates a replay buffer to store past experiences and

target networks to stabilize training. This algorithm efficiently

learns in environments with continuous action spaces, making it

applicable to tasks like robotic control and autonomous systems.

2.2. Mathematical Formula

We denote a set of states as 𝑆, a set of actions as 𝐴,

and a set of rewards as 𝑅. At each time step 𝑡, the agent

receives the environmental state representation, denoted

as 𝑆𝑡 ∈ 𝑆. Based on this state, the agent selects an action

𝐴𝑡 ∈ 𝐴, resulting in the state-action pair (𝑆𝑡, 𝐴𝑡). In the

next time step, 𝑡 + 1, the environment transitions, leading

to the new state 𝑆𝑡+1 ∈ 𝑆. At this time step 𝑡 + 1, the agent

receives a reward 𝑅𝑡+1 ∈ 𝑅 for the action 𝐴𝑡 taken from

the state 𝑆𝑡. The following figure (Fig. 1) shows a general

representation of a reinforcement learning scenario.

Fig. 1. A reinforcement learning scenario.

The expected return can be represented as:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯

 = ∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1

(1)

With the discount factor γ is introduced here to

guide the agent's attention towards immediate rewards

rather than distant future rewards. The value of 𝛾 typically

ranges between 0 and 1.

If at time 𝑡, an agent is following policy 𝜋, then

𝜋(𝑎|𝑠) represents the probability that the action taken at

time step 𝑡 is 𝐴𝑡 = 𝑎 and the state is 𝑆𝑡 = 𝑠. The state-

value function for policy 𝜋 denoted 𝑣𝜋 as determines the

goodness of any given state for an agent who is following

policy π:

𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]
 = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠∞

𝑘=0]
(2)

The action-value function (3) below determines

the goodness of the action taken by the agent from a given

state for policy π.

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

(3)

We consider π to be an optimal policy if it is better

than or at least the same as all other policies π′ is

represented by equation.

𝜋 ≥ 𝜋′ if only if 𝑣𝜋(𝑠) ≥ 𝑣′
𝜋(𝑠) for all 𝑠 ∈

𝑆

(4)

The optimal state-value function 𝑣∗ which gives

the largest expected return achievable by any policy 𝜋 for

each state 𝑠 ∈ 𝑆 defined as:

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠) (5)

Optimal action-value function, or optimal Q-

function, which gives the largest expected return

achievable by any policy 𝜋 for 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 defined

as:

𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) (6)

We denoted as 𝑄∗, and using the Bellman equation.

It is given by:

𝑄∗(𝑠, 𝑎) = 𝐸
𝑠′~𝑃

[𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)] (7)

where 𝑠′~𝑃 is shorthand for the next state 𝑠′, is sampled

by the environment from a distribution 𝑃(. |𝑠, 𝑎), and 𝑎′
is next action.

Assuming the approximator is a neural network

𝑄𝜙(𝑠, 𝑎), with parameters 𝜙, and given a set 𝒟 of

transitions of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) (where 𝑑 indicates

whether state 𝑠′ is terminal). We can set up a mean-

squared Bellman error (MSBE) function (8):

𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1

− 𝑑) max
𝑎′

𝑄𝜙 (𝑠′, 𝑎′)))2]

(8)

 The term 𝑟 + 𝛾(1 − 𝑑) max
𝑎′

𝑄𝜙(𝑠′, 𝑎′) is called

target, when we minimize the MSBE loss to make the Q-

function be more like this target. The parameters of the

target network are denoted 𝜙𝑡𝑎𝑟𝑔. In DDPG algorithms,

the target network is updated once per main network

update by “polyak averaging” (where 𝜌 is a

hyperparameter between 0 and 1):

𝜙𝑡𝑎𝑟𝑔 ← 𝜌𝜙𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜙 (9)

 Putting it all together, Q-learning in DDPG is

performed by minimizing the following MSBE loss with

stochastic gradient descent (where 𝜇𝜃𝑡𝑎𝑟𝑔 is the target

policy):

𝐿(𝜙, 𝒟)

= E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1

− 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔(𝑠′, 𝜇𝜃𝑡𝑎𝑟𝑔(𝑠′))))2]

(10)

 Finally, the policy learning is performed by:

max
𝜃

E
𝑠~𝒟

[𝑄𝜙(𝑠, 𝜇𝜃(𝑠))] (11)

 DDPG learns two parameterized functions: a Q-

function 𝑄𝜙(𝑠, 𝑎) and a policy 𝜇𝜃(𝑠). In terms of

terminology, the Q-function is referred to as the critic,

while the policy is known as the actor.

DDPG agents use the critic to estimate the policy

values. The critic takes the current observation and action

as inputs, producing a scalar output representing the

estimated discounted cumulative long-term reward when

executing the specified action from the current state and

following the policy thereafter. Additionally, DDPG

agents employ an actor designed for continuous action

spaces. The continuous deterministic actor takes the

current observation as input and deterministically outputs

an action based on the observation. DDPG operates as an

off-policy learning algorithm, indicating that the

improvement of the learned policy depends on a separate

policy for action selection.

Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart

Robotica Management, 28-2 / 2023

16

To enhance stability in learning, target networks

are implemented for both the critic and actor in DDPG.

These target networks are updated based on the soft-

update rule, gradually incorporating information from the

corresponding main networks. [1].

DDPG uses a replay buffer to avoid focusing too

much on recent experiences. By storing and randomly

picking past experiences, it helps the algorithm learn more

effectively and stay stable during training. This also

encourages better exploration of the environment. Its

structure is illustrated in (Fig. 2).

Fig. 2. DDPG diagram [9]

Pseudo-code for the algorithm is provided in (Fig.

3). This is the algorithm we have followed for computing

a policy for controlling our DIPC.

Fig. 3. DDPG algorithm pseudo-code [7].

3. Double Inverted Pendulum on a Cart

3.1. Background

DIPC comprises two linked pendulums attached to

a cart moving along a track (Fig. 4). Designing a

controller for these coupled pendulums introduces an

extra layer of complexity compared to a single inverted

pendulum system. The inclusion of a second pendulum

not only presents an additional challenge but also offers

an opportunity to demonstrate advanced control concepts

or serve as a basis for research.

Fig. 4. Mathematical model of DIPC

In this article, our focus is not on solving the

mathematical equations that model the system. As

previously mentioned, reinforcement learning methods

diverge from traditional approaches; RL does not require

explicit knowledge and the solution of the system's

equations for control computation. The training goal is to

make both of pendulums stand upright without falling

over from downward position using minimal control

effort (swing-up and balance tasks). The system

parameters are presented in (Tab. 1)

Tab. 1. Parameters of DIPC
N

r.

Parame

ter
Description Value

Unit

1 𝑚0 The cart mass 0.350 𝑘𝑔

2 𝑚1 The pendulum 1 mass 0.133 𝑘𝑔

3 𝑚2 The pendulum 2 mass 0.025 𝑘𝑔

4 𝐴1 The pendulum 1 length 0.5 𝑚

5 𝐴2 The pendulum 2 length 0.5 𝑚

6 𝑏0
Damping coefficient of the

cart
0.05

𝑁𝑠
𝑚⁄

7 𝑏1
Damping coefficient of the

pendulum 1
0.001

𝑁𝑠
𝑚⁄

8 𝑏2
Damping coefficient of the

pendulum 2
0.001

𝑁𝑠
𝑚⁄

3.2. State Space

The state space 𝑠 is composed of 6 continuous

states variables 𝑠 ∈ ℝ6, that is represented as:

𝑠 = [𝑥 �̇� 𝜃1 𝜃1̇ 𝜃2 𝜃2̇]
𝑇
 (12)

To represent the observation of state s in DDPG,

sin/cos functions are used to describe deflection angle

changes. It simplifies the representation of fluctuations

and rotations, thanks to the inherent simplicity and

cyclical nature of these trigonometric functions. The

periodic graphs produced by sin/cos functions make it

easy to observe and analyze the system's vibrational

characteristics. Using 𝑜(𝑠) ∈ ℝ8, it becomes:

Ho T.N., Tat T.S., Ngo H.A., Nguyen T.S., Bui D.A., Le T.T., Le V.L., Huynh L.T.

Robotica Management, 28-2 / 2023

17

𝑜(𝑠)

= [𝑥 �̇� sin 𝜃1 cos 𝜃1 𝜃1̇ sin 𝜃2 cos 𝜃2 𝜃2̇]
𝑇

 (13)

where:

𝑥 [𝑚]: correspond to the cart position in the 𝑥 axis,

the domain of this variable is 𝑥 ∈ [−2.4, 2.4].
𝜃1[𝑟𝑎𝑑] and 𝜃2 [𝑟𝑎𝑑]: represent respectively the

angle of the first and second pendulums as we can see in

(Fig. 2). The upward balanced pendulum position is (0; 0)

rad, and the downward hanging position is (𝜋; 0) rad.

�̇�[𝑚/𝑠], 𝜃1̇[𝑟𝑎𝑑/𝑠], and 𝜃2̇[𝑟𝑎𝑑/𝑠]: represent the

velocities of the cart, pendulum 1, and pendulum 2,

respectively.

3.3. Action Space

The action space 𝑢(𝑁) is continuous where =
 [−15, 15], 𝑎(𝑢) ∈ ℝ1. It correspond to the force applied

to the cart in one or the other direction.

3.4. Reward Function

The reward 𝑟𝑡, provided at every time step 𝑡, is:

𝑟𝑡 = −𝓌0(𝓌1𝜃1𝑡
2 + 𝓌2𝜃2𝑡

2 + 𝓌3𝑥𝑡
2 +

𝓌4𝑢𝑡−1
2) − 𝑉𝑝𝐹 (14)

where 𝜔0, 𝜔1, 𝜔2, 𝜔3, 𝜔4 are the weight variables that

indicate the importance or priority of each state in

influencing the system's performance or learning

behavior. Adjusting these weights allows for a targeted

focus on specific states, influencing the optimization

process in reinforcement learning or autonomous control

systems. 𝑉𝑝 is the penalty value with F is a flag (1 or 0)

that indicates whether the cart is out of bounds. Their

values are shown in (Tab. 2).

Tab. 2. Values of weight matrix

Nr. Sysbol Value

1 𝜔0 0.1

2 𝜔1 5

3 𝜔2 5

4 𝜔3 1

5 𝜔4 0.05

6 𝑉𝑝 100

3.5. Discount Factor

We have chosen a discount factor 𝛾 is 0.99 [5].

This relatively high discount factor encourages the agent

to minimize the likelihood of entering a terminal state

whenever possible.

3.6. Critic Network

To model the parameterized Q-value function

within the critic, utilize a neural network with two input

layers, one for the observation channel and the other for

the action channel, and one output layer that returns the

scalar value.

Critic network Q uses a 2-layer MLP with 400 and

300 neurons. Action is included in the first layer, and

“ReLU” is the activation function for all hidden layers.

Training utilizes the “Adam optimizer” with a learning

rate of 1𝑒−3 [2]. Utilize functions provided by

Reinforcement Learning Library of MATLAB, it is

represented as (Fig. 4)

Fig. 4. Critic network structure.

3.7. Actor Network

To define the parameterized policy in the actor,

employ a neural network with a single input layer,

receiving information from the environment observation

channel, and a sole output layer, generating actions for the

environment action channel.

Actor network μ is a MLP that has 2 hidden layers

of 400 and 300 neurons respectively. The last layer of the

network is “tanhLayer” constrains output within

[−15 15] (N), adjust the network output to align with the

action range through “scalingLayer”. “Adam optimizer”

has been used with a learning rate of 1𝑒−4 [2]. Utilize

functions provided by Reinforcement Learning Library of

MATLAB, it is represented as (Fig. 5).

Fig. 5. Actor network structure.

3.8. Experience Reply Buffer

The replay buffer is of finite size ℝ and the set of

transitions 𝒟 is randomly sampled from it. Each transition

(𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) sampled from the environment by using the

exploration policy is stored in the replay buffer. In this

article, we utilize a replay buffer with a size of 1𝑒6 and a

mini-batch size of 256.

3.9. Training Setup

To train the agent, we set training options in

MATLAB to run for a maximum of 10000 episodes, each

lasting up to 1000 time-steps with sample time 0.02s.

Monitor the training progress through Episode Manager

Dialog box of MATLAB. Stop training if the agent

achieves an average cumulative reward exceeding -150

Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart

Robotica Management, 28-2 / 2023

18

across five consecutive episodes. At this point agent's

proficiency in efficiently balancing the pendulum in an

upright position with minimal control effort.

4. Simulation

The training simulation build as (Fig. 6).

Fig. 6. DIPC System and DDPG Agent in MATLAB Simulink.

We employ Simscape in MATLAB to simulate the

physical model of the DIPC system as (Fig. 7). The

reliability of Simscape has been validated [8]. The

Simscape Multibody model is constructed using physical

connections, allowing bidirectional energy flow between

components. Additional pendulum stages can be easily

added using copy and paste, leveraging the convenience

of physical connections. Visualizing the pendulum's

behavior during training is facilitated through Simscape

monitoring, enabling easier monitoring and adjustment.

Fig. 7. Building a DIPC in Simscape.

After performing training process, training results

are presented in (Fig. 8). The DDPG algorithm

demonstrated convergence after exceeding 1000 episodes,

successfully achieving the desired outcomes by the

1216th episode. At this point, the agent showcased its

ability to swing up the system from initial states and

maintain the pendulum in the upright position with

minimal control effort. The average reward at this stage

was registered at -134.849.

Ho T.N., Tat T.S., Ngo H.A., Nguyen T.S., Bui D.A., Le T.T., Le V.L., Huynh L.T.

Robotica Management, 28-2 / 2023

19

Fig. 8. Training progress.

 The output responses for DIPC system are

depicted in (Fig. 9), (Fig. 10), (Fig. 11), (Fig. 12), (Fig.

13) respectively. A video showing the DIPC system's

natural behavior when swing-up and balance can be found

at:

https://www.youtube.com/watch?v=e2OT6WeYf9I.

Fig. 9. Cart position (m).

Fig. 10. Cart velocity (m/s).

Fig. 11. Angle of Pendulum 1 and 2 (rad).

Fig. 12. Angular velocity of Pendulum 1 and 2 (rad/s).

https://www.youtube.com/watch?v=e2OT6WeYf9I

Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart

Robotica Management, 28-2 / 2023

20

Fig. 13. Force acting on the cart (N).

5. Conclusions

Application of DDPG for controlling DIPC has

yielded promising results. The controller successfully

maneuvers pendulum to balanced position from initial

state in approximately 1 sec. It demonstrates efficient and

rapid stabilization. Furthermore, system maintains

stability with two inverted pendulums, showcasing the

robustness of the DDPG-based control approach. These

findings highlight the efficacy of DDPG in addressing the

challenging dynamics of DIPC, laying the foundation for

further exploration and application in the realm of

dynamic control systems. As a future endeavor, we aim to

apply the DDPG algorithm to a physical model for real-

world testing. This will provide insights into the

algorithm's effectiveness, robustness, and adaptability in

practical environments. The objective is to bridge the gap

between simulation and reality, refining DDPG controller

for diverse and dynamic scenarios.

Acknowledgement

We want to give thanks to PhD. Van-Dong-Hai

Nguyen (faculty of Electronics and Electrical

Engineering, HCMUTE) due to his supervision for this

research.

6. References

[1] Sutton R.S., and Andrew G. Barto.: “Reinforcement

Learning: An Introduction, Second edition”, Adaptive

Computation and Machine Learning, Cambridge, Mass:

The MIT Press, 2018.

[2] Gustin J., Houyon J.: “Inverted Double Pendulum:

Searching High-Quality Policies to Control an Unstable

Physical System”, INFO8003: Optimal decision making

for complex problems, 2022.

[3] Tran V.D, Ho T.N, Nguyen M.T, Nguyen V.D.H.:

“Balancing Control For Double-Linked Inverted

Pendulum On Cart: Simulation And Experiment”, Journal

of Technical Education Science, No. 44A, 2017.

[4] Bogdanov A.: “Optimal Control of a Double Inverted

Pendulum on a Cart”, Technical Report CSE-04-006,

2004.

[5] Lillicrap T.P., Hunt J.J., Pritzel A., Heess N., Erez T.,

Tassa Y., Silver D, Wierstra D.: “Continuous Control with

Deep Reinforcement Learning”, ICLR, 2016.

[6] Gustafsson F.: “Control of Inverted Double

Pendulum using Reinforcement Learning”, 2016.

[7] OpenAI.: “Deep Deterministic Policy Gradient”,

2018.

[8] Matlab.: “Single Pendulum in Simulink and Simscape

Multibody”, 2023.

[9] Panjapornpon C., Chinchalongporn P., Bardeeniz S.,

Makkayatorn R., Wongpunnawat W.: “Reinforcement

Learning Control with Deep Deterministic Policy

Gradient Algorithm for Multivariable pH Process”,

MDPI, 2022.

