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Abstract: In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning 

to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The 

simulation results demonstrate DDPG's stability and effectiveness in achieving swing-up and balance, showing its 

potential for tackling challenging control tasks in robotics. 
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1. Introduction 

In the field of control engineering, applying 

optimal control methods yields high efficiency but 

demands knowledge of the system and the ability to 

construct the system's mathematical equations. This poses 

challenges, particularly for highly complex systems, those 

operating in noisy environments, subject to environmental 

influences, or with high manufacturing inaccuracies in 

mechanical systems. An effective alternative approach in 

such cases is the application of machine learning methods, 

allowing the system to autonomously learn how to control 

itself without requiring in-depth knowledge of the system, 

while also enhancing the system's adaptability to its 

environment. 

Reinforcement Learning (RL) is a machine 

learning subfield that trains systems to make decisions for 

achieving optimal outcomes through trial-and-error 

interactions with the environment, without human 

intervention. Recent advancements in RL have expanded 

its application to various control problems, such as 

AlphaGo and AlphaZero in games, autonomous driving, 

and game management, offering new opportunities for 

self-learning and adaptation in real-world scenarios. 

The primary goal of RL is to train an agent to 

perform tasks in an unfamiliar environment. The agent 

receives observations and rewards from the environment 

and responds by taking actions, with the reward serving 

as a measure of the action's success in achieving the task's 

objective.  

This paper specifically focuses on the application 

of the Deep Deterministic Policy Gradients (DDPG) 

algorithm, DDPG is designed for solving continuous 

action space problems in which an agent learns to interact 

with an environment by taking actions to maximize 

cumulative rewards. It combines elements of both actor-

critic methods and deep neural networks to find optimal 

policies for continuous control tasks. It has shown success 

in various applications, including autonomous driving and 

robot control. In this study, we employ the DDPG 

algorithm to control the balance of a double inverted 

pendulum system mounted on a cart, renowned for its 

high instability, strong nonlinearity, and chaotic behavior. 

Our evaluation of the control method is conducted within 

a simulated environment using MATLAB.  

2. Deep Deterministic Policy Gradients 

2.1. Background 

Reinforcement learning is a computer-based approach 

in which a machine learns to perform tasks by interacting with 

an unknown environment, aiming to maximize the total amount 

of rewards or cumulative reward through decision-making 

without human intervention and without being explicitly 

programmed to achieve the task. 

The objective of reinforcement learning is to train an 

agent to acquire an optimal or nearly optimal policy that 

maximizes the reward function or another reinforcement signal 

provided by the user, which is constructed from immediate 

rewards. The agent interacts with the environment, receiving 

feedback in the form of observations and rewards, and sends 

actions to the environment. Rewards indicate the level of 

success in completing the task. 

Deep Deterministic Policy Gradient (DDPG) is a 

reinforcement learning algorithm designed to tackle challenges 

in environments with continuous action spaces. It combines 

concepts from policy-based methods and value-based methods 

to efficiently learn policies for tasks with continuous control. 

The algorithm employs a policy network (actor) for selecting 

actions and a value function (critic) for evaluating those actions. 
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DDPG incorporates a replay buffer to store past experiences and 

target networks to stabilize training. This algorithm efficiently 

learns in environments with continuous action spaces, making it 

applicable to tasks like robotic control and autonomous systems. 

2.2. Mathematical Formula 

We denote a set of states as 𝑆, a set of actions as 𝐴, 

and a set of rewards as 𝑅. At each time step 𝑡, the agent 

receives the environmental state representation, denoted 

as 𝑆𝑡 ∈ 𝑆. Based on this state, the agent selects an action 

𝐴𝑡 ∈ 𝐴, resulting in the state-action pair (𝑆𝑡, 𝐴𝑡). In the 

next time step, 𝑡 + 1, the environment transitions, leading 

to the new state 𝑆𝑡+1 ∈ 𝑆. At this time step 𝑡 + 1, the agent 

receives a reward 𝑅𝑡+1 ∈ 𝑅 for the action 𝐴𝑡 taken from 

the state 𝑆𝑡. The following figure (Fig. 1) shows a general 

representation of a reinforcement learning scenario. 

 

 
Fig. 1. A reinforcement learning scenario. 

The expected return can be represented as: 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ 

       = ∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1                

(1) 

With the discount factor γ is introduced here to 

guide the agent's attention towards immediate rewards 

rather than distant future rewards. The value of 𝛾 typically 

ranges between 0 and 1. 

If at time 𝑡, an agent is following policy 𝜋, then 

𝜋(𝑎|𝑠) represents the probability that the action taken at 

time step 𝑡 is 𝐴𝑡 = 𝑎 and the state is 𝑆𝑡 = 𝑠. The state-

value function for policy 𝜋 denoted 𝑣𝜋 as determines the 

goodness of any given state for an agent who is following 

policy π: 

𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] 
  = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠∞

𝑘=0 ]      
(2) 

 

The action-value function (3) below determines 

the goodness of the action taken by the agent from a given 

state for policy π. 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

 = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

(3) 

We consider π to be an optimal policy if it is better 

than or at least the same as all other policies π′ is 

represented by equation. 

𝜋 ≥ 𝜋′ if only if 𝑣𝜋(𝑠) ≥ 𝑣′
𝜋(𝑠) for all 𝑠 ∈

𝑆  

(4) 

 

The optimal state-value function 𝑣∗ which gives 

the largest expected return achievable by any policy 𝜋 for 

each state 𝑠 ∈ 𝑆 defined as:  

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠)                                      (5) 

Optimal action-value function, or optimal Q-

function, which gives the largest expected return 

achievable by any policy 𝜋 for 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 defined 

as: 

𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎)  (6) 

We denoted as 𝑄∗, and using the Bellman equation. 

It is given by: 

𝑄∗(𝑠, 𝑎) = 𝐸
𝑠′~𝑃

[𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)]   (7) 

where 𝑠′~𝑃 is shorthand for the next state 𝑠′, is sampled 

by the environment from a distribution 𝑃(. |𝑠, 𝑎), and 𝑎′ 
is next action. 

Assuming the approximator is a neural network 

𝑄𝜙(𝑠, 𝑎), with parameters 𝜙, and given a set 𝒟 of 

transitions of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) (where 𝑑 indicates 

whether state 𝑠′ is terminal). We can set up a mean-

squared Bellman error (MSBE) function (8): 

𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1

− 𝑑) max
𝑎′

𝑄𝜙 (𝑠′, 𝑎′)))2] 

(8) 

 The term 𝑟 + 𝛾(1 − 𝑑) max
𝑎′

𝑄𝜙(𝑠′, 𝑎′) is called 

target, when we minimize the MSBE loss to make the Q-

function be more like this target. The parameters of the 

target network are denoted 𝜙𝑡𝑎𝑟𝑔. In DDPG algorithms, 

the target network is updated once per main network 

update by “polyak averaging” (where 𝜌 is a 

hyperparameter between 0 and 1): 

𝜙𝑡𝑎𝑟𝑔 ← 𝜌𝜙𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜙 (9) 

 Putting it all together, Q-learning in DDPG is 

performed by minimizing the following MSBE loss with 

stochastic gradient descent (where 𝜇𝜃𝑡𝑎𝑟𝑔 is the target 

policy): 

𝐿(𝜙, 𝒟)

= E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1

− 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔(𝑠′, 𝜇𝜃𝑡𝑎𝑟𝑔(𝑠′))))2] 

(10) 

 Finally, the policy learning is performed by: 

max
𝜃

E
𝑠~𝒟

[𝑄𝜙(𝑠, 𝜇𝜃(𝑠))]                          (11) 

  DDPG learns two parameterized functions: a Q-

function 𝑄𝜙(𝑠, 𝑎) and a policy 𝜇𝜃(𝑠). In terms of 

terminology, the Q-function is referred to as the critic, 

while the policy is known as the actor. 

DDPG agents use the critic to estimate the policy 

values. The critic takes the current observation and action 

as inputs, producing a scalar output representing the 

estimated discounted cumulative long-term reward when 

executing the specified action from the current state and 

following the policy thereafter. Additionally, DDPG 

agents employ an actor designed for continuous action 

spaces. The continuous deterministic actor takes the 

current observation as input and deterministically outputs 

an action based on the observation. DDPG operates as an 

off-policy learning algorithm, indicating that the 

improvement of the learned policy depends on a separate 

policy for action selection.  
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To enhance stability in learning, target networks 

are implemented for both the critic and actor in DDPG. 

These target networks are updated based on the soft-

update rule, gradually incorporating information from the 

corresponding main networks. [1].  

DDPG uses a replay buffer to avoid focusing too 

much on recent experiences. By storing and randomly 

picking past experiences, it helps the algorithm learn more 

effectively and stay stable during training. This also 

encourages better exploration of the environment. Its 

structure is illustrated in (Fig. 2). 

 
Fig. 2. DDPG diagram [9] 

Pseudo-code for the algorithm is provided in (Fig. 

3). This is the algorithm we have followed for computing 

a policy for controlling our DIPC. 

 
Fig. 3. DDPG algorithm pseudo-code [7]. 

3. Double Inverted Pendulum on a Cart 

3.1. Background 

DIPC comprises two linked pendulums attached to 

a cart moving along a track (Fig. 4). Designing a 

controller for these coupled pendulums introduces an 

extra layer of complexity compared to a single inverted 

pendulum system. The inclusion of a second pendulum 

not only presents an additional challenge but also offers 

an opportunity to demonstrate advanced control concepts 

or serve as a basis for research. 

 
Fig. 4. Mathematical model of DIPC 

In this article, our focus is not on solving the 

mathematical equations that model the system. As 

previously mentioned, reinforcement learning methods 

diverge from traditional approaches; RL does not require 

explicit knowledge and the solution of the system's 

equations for control computation. The training goal is to 

make both of pendulums stand upright without falling 

over from downward position using minimal control 

effort (swing-up and balance tasks). The system 

parameters are presented in (Tab. 1) 

 

Tab. 1. Parameters of DIPC 
N

r. 

Parame

ter 
Description Value 

Unit 

1 𝑚0 The cart mass 0.350 𝑘𝑔 

2 𝑚1 The pendulum 1 mass 0.133 𝑘𝑔 

3 𝑚2 The pendulum 2 mass 0.025 𝑘𝑔 

4 𝐴1 The pendulum 1 length 0.5 𝑚 

5 𝐴2 The pendulum 2 length 0.5 𝑚 

6 𝑏0 
Damping coefficient of the 

cart 
0.05 

𝑁𝑠
𝑚⁄  

7 𝑏1 
Damping coefficient of the 

pendulum 1 
0.001 

𝑁𝑠
𝑚⁄  

8 𝑏2 
Damping coefficient of the 

pendulum 2 
0.001 

𝑁𝑠
𝑚⁄  

3.2. State Space 

The state space 𝑠 is composed of 6 continuous 

states variables 𝑠 ∈  ℝ6, that is represented as: 

𝑠 = [𝑥 �̇� 𝜃1 𝜃1̇ 𝜃2 𝜃2̇]
𝑇
               (12) 

To represent the observation of state s in DDPG, 

sin/cos functions are used to describe deflection angle 

changes. It simplifies the representation of fluctuations 

and rotations, thanks to the inherent simplicity and 

cyclical nature of these trigonometric functions. The 

periodic graphs produced by sin/cos functions make it 

easy to observe and analyze the system's vibrational 

characteristics. Using 𝑜(𝑠) ∈ ℝ8, it becomes: 
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𝑜(𝑠)

= [𝑥 �̇� sin 𝜃1 cos 𝜃1 𝜃1̇ sin 𝜃2 cos 𝜃2 𝜃2̇]
𝑇
 

            (13) 

where: 

𝑥 [𝑚]: correspond to the cart position in the 𝑥 axis, 

the domain of this variable is 𝑥 ∈  [−2.4, 2.4]. 
𝜃1[𝑟𝑎𝑑] and 𝜃2 [𝑟𝑎𝑑]: represent respectively the 

angle of the first and second pendulums as we can see in 

(Fig. 2). The upward balanced pendulum position is (0; 0)  

rad, and the downward hanging position is (𝜋; 0) rad. 

�̇�[𝑚/𝑠], 𝜃1̇[𝑟𝑎𝑑/𝑠], and 𝜃2̇[𝑟𝑎𝑑/𝑠]: represent the 

velocities of the cart, pendulum 1, and pendulum 2, 

respectively. 

3.3. Action Space 

The action space 𝑢(𝑁) is continuous where  =
 [−15, 15], 𝑎(𝑢) ∈ ℝ1. It correspond to the force applied 

to the cart in one or the other direction. 

3.4. Reward Function 

The reward 𝑟𝑡, provided at every time step 𝑡, is: 

 

𝑟𝑡 = −𝓌0(𝓌1𝜃1𝑡
2 + 𝓌2𝜃2𝑡

2 + 𝓌3𝑥𝑡
2 +

𝓌4𝑢𝑡−1
2) − 𝑉𝑝𝐹             (14) 

where 𝜔0,  𝜔1,  𝜔2, 𝜔3, 𝜔4 are the weight variables that 

indicate the importance or priority of each state in 

influencing the system's performance or learning 

behavior. Adjusting these weights allows for a targeted 

focus on specific states, influencing the optimization 

process in reinforcement learning or autonomous control 

systems. 𝑉𝑝 is the penalty value with F is a flag (1 or 0) 

that indicates whether the cart is out of bounds. Their 

values are shown in (Tab. 2). 

 

Tab. 2. Values of weight matrix  

Nr. Sysbol Value 

1 𝜔0 0.1 

2 𝜔1 5 

3 𝜔2 5 

4 𝜔3 1 

5 𝜔4 0.05 

6 𝑉𝑝 100 

3.5. Discount Factor 

We have chosen a discount factor 𝛾 is 0.99 [5]. 

This relatively high discount factor encourages the agent 

to minimize the likelihood of entering a terminal state 

whenever possible. 

3.6. Critic Network 

To model the parameterized Q-value function 

within the critic, utilize a neural network with two input 

layers, one for the observation channel and the other for 

the action channel, and one output layer that returns the 

scalar value. 

Critic network Q uses a 2-layer MLP with 400 and 

300 neurons. Action is included in the first layer, and 

“ReLU” is the activation function for all hidden layers. 

Training utilizes the “Adam optimizer” with a learning 

rate of 1𝑒−3 [2]. Utilize functions provided by 

Reinforcement Learning Library of MATLAB, it is 

represented as (Fig. 4) 

 
Fig. 4. Critic network structure. 

3.7. Actor Network 

To define the parameterized policy in the actor, 

employ a neural network with a single input layer, 

receiving information from the environment observation 

channel, and a sole output layer, generating actions for the 

environment action channel. 

Actor network μ is a MLP that has 2 hidden layers 

of 400 and 300 neurons respectively. The last layer of the 

network is “tanhLayer” constrains output within 

[−15 15] (N), adjust the network output to align with the 

action range through “scalingLayer”. “Adam optimizer” 

has been used with a learning rate of 1𝑒−4 [2]. Utilize 

functions provided by Reinforcement Learning Library of 

MATLAB, it is represented as (Fig. 5). 

 
Fig. 5. Actor network structure. 

3.8. Experience Reply Buffer 

The replay buffer is of finite size ℝ and the set of 

transitions 𝒟 is randomly sampled from it. Each transition 

(𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) sampled from the environment by using the 

exploration policy is stored in the replay buffer. In this 

article, we utilize a replay buffer with a size of 1𝑒6 and a 

mini-batch size of 256. 

3.9. Training Setup 

To train the agent, we set training options in 

MATLAB to run for a maximum of 10000 episodes, each 

lasting up to 1000 time-steps with sample time 0.02s. 

Monitor the training progress through Episode Manager 

Dialog box of MATLAB. Stop training if the agent 

achieves an average cumulative reward exceeding -150 
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across five consecutive episodes. At this point agent's 

proficiency in efficiently balancing the pendulum in an 

upright position with minimal control effort. 

4. Simulation 

The training simulation build as (Fig. 6).

 
Fig. 6. DIPC System and DDPG Agent in MATLAB Simulink. 

 

We employ Simscape in MATLAB to simulate the 

physical model of the DIPC system as (Fig. 7). The 

reliability of Simscape has been validated [8]. The 

Simscape Multibody model is constructed using physical 

connections, allowing bidirectional energy flow between 

components. Additional pendulum stages can be easily 

added using copy and paste, leveraging the convenience 

of physical connections. Visualizing the pendulum's 

behavior during training is facilitated through Simscape 

monitoring, enabling easier monitoring and adjustment. 

 
Fig. 7. Building a DIPC in Simscape. 

After performing training process, training results 

are presented in (Fig. 8). The DDPG algorithm 

demonstrated convergence after exceeding 1000 episodes, 

successfully achieving the desired outcomes by the 

1216th episode. At this point, the agent showcased its 

ability to swing up the system from initial states and 

maintain the pendulum in the upright position with 

minimal control effort. The average reward at this stage 

was registered at -134.849. 
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Fig. 8. Training progress. 

 

 The output responses for DIPC system are 

depicted in (Fig. 9), (Fig. 10), (Fig. 11), (Fig. 12), (Fig. 

13) respectively. A video showing the DIPC system's 

natural behavior when swing-up and balance can be found 

at:  

https://www.youtube.com/watch?v=e2OT6WeYf9I. 

 

 
Fig. 9. Cart position (m). 

 
Fig. 10. Cart velocity (m/s). 

 
Fig. 11. Angle of Pendulum 1 and 2 (rad). 

 
Fig. 12. Angular velocity of Pendulum 1 and 2 (rad/s). 

https://www.youtube.com/watch?v=e2OT6WeYf9I
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Fig. 13. Force acting on the cart (N).

5. Conclusions 

Application of DDPG for controlling DIPC has 

yielded promising results. The controller successfully 

maneuvers pendulum to balanced position from initial 

state in approximately 1 sec. It demonstrates efficient and 

rapid stabilization. Furthermore, system maintains 

stability with two inverted pendulums, showcasing the 

robustness of the DDPG-based control approach. These 

findings highlight the efficacy of DDPG in addressing the 

challenging dynamics of DIPC, laying the foundation for 

further exploration and application in the realm of 

dynamic control systems. As a future endeavor, we aim to 

apply the DDPG algorithm to a physical model for real-

world testing. This will provide insights into the 

algorithm's effectiveness, robustness, and adaptability in 

practical environments. The objective is to bridge the gap 

between simulation and reality, refining DDPG controller 

for diverse and dynamic scenarios. 
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