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Abstract: Pendubot is a popular single input-multi output (SIMO) in laboratories to test control algorithms. In this 

paper, we focus on a developed model of pendubot – linear triple-linked pendubot (LTLP) and propose LQR to control 

this model. Through simulation, link 1 is kept balanced, kept following trajectories when link 2, 3 is kept upward under 

LQR control. Thence, besides balancing well this model at TOP position, our algorithm also makes system tracking 

sine and pulse trajectories well.  
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1. Introduction 

 

Pendubot is a standard and important model in 

study of algorithms. This is the basis for building self- 

stabilizing systems such as rockets, suspensions of 

cars, balance cars. In [1], both PID and LQR 

controllers are used well for pendubot at static work 

points. In [2], fuzzy algorithm is used to balance it 

well. However, this model becomes basic and it cannot 

satisfy the requirement of research in high-order 

structure. Therefore, LTLP is created for testing 

control algorithms with higher challenges. With one 

link added when still maintaining only one motor. LQR 

method is presented to work well for this model in [3].  

LQR method gives simple control structure and 

control parameters can be calculated from 

mathematical model of system. Thence, LQR is a 

suitable control method for this complicated model. 

Only TOP position is examined and trajectories 

tracking control is not concerned in that study.  

In this paper, we analyse dynamic equations of 

LTLP from structure of a multi-linked robot arm in [4]. 

This approach is different from study [3] which 

follows the structure of n-linked pendubot in [5]. And, 

we propose a structure of LQR control which helps this 

system to follow trajectories sine and pulse. This is a 

development from [3]. 

 

2. Mathematical Model 

 

From Fig. 1, first arm is linked to the motor in 

position O. Next, we have some changes to convert the 

model into SIMO system: link 2 connects to Link 1 

through the uncontrolled point A. Similarly in Link 3 

linked to Link 2.  

 

In [4], author was shown for 3-axis robot 

kinematics similar to the model LTLP, we inherit the 

mathematical equations of the Motion of a Planar 3-

DOF Manipulator. By only controlling Link 1 of the 

robot and not affecting Link 2 and 3, the robot 3-DOF 

Manipulator will become LTLP. 

 

 
Fig. 1. Analyze physical quantities for LTLP model 

based on document [4]  

Tab. 1. Parameters of system from [4] 

Parameters Description Values 

m1 mass of link 1 0.15 (kg) 

m2 mass of link 2 0.14 (kg) 

m3 mass of link 3 0.055 (kg) 

l1 length of link 1 0.2 (m) 

l2 length of link 2 0.2 (m) 

l3 length of link 3 0.22 (m) 

g gravity of Earth 9.81(m s2⁄ ) 

Note: in this model, point C is the center of 

gravity of each arm 

The nonlinear model of LTLP is described in 

the form: 
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𝐴𝜃̈ − 𝐵 = 𝜏 (1) 

 

where: 
 

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] ;  𝐵 = [

𝑏1

𝑏2

𝑏3

] ;  𝜏 = [
𝜏1

0
0

]𝜃; ̈  = [

𝜃̈1

𝜃̈2

𝜃̈3

]; 𝑎11 =

(
𝑚1

3
+ 𝑚2 + 𝑚3) 𝑙1

2 + (
𝑚2

3
+ 𝑚3) 𝑙2

2 + 2(
𝑚2

2
+

𝑚3) 𝑙1𝑙2 cos 𝜃2 + 𝑚3𝑙3 (𝑙1 cos(𝜃2 + 𝜃3) + 𝑙2 cos 𝜃3 +
𝑙3

3
); 

𝑎12 = 𝑎21 = (
𝑚2

3
+ 𝑚3) 𝑙2

2 + (
𝑚2

2
+ 𝑚3) 𝑙1𝑙2 cos 𝜃2 +

𝑚3𝑙3 (
𝑙1

2
cos(𝜃2 + 𝜃3) + 𝑙2 cos 𝜃3 +

𝑙3

3
) ; 𝑎13 = 𝑎31 =

𝑚3𝑙3 (
𝑙1

2
cos (𝜃2 + 𝜃3) +

𝑙2

2
cos 𝜃3 +

𝑙3

3
); 𝑎22 =

(
𝑚2

3
+ 𝑚3) 𝑙2

2 + 𝑚3𝑙3 (𝑙2cos 𝜃3 +
𝑙3

3
); 𝑎23 = 𝑎32 =

𝑚3𝑙3 (
𝑙2

2
cos 𝜃3 +

𝑙3

3
); 𝑎33 =

𝑚3𝑙3
2

3
;  𝑏1 = & (

𝑚2

2
+

𝑚3) 𝑙1𝑙2𝜃̇2(2𝜃̇1 + 𝜃̇2) sin 𝜃2 +
𝑚3𝑙3

2
(𝑙1(𝜃̇2 + 𝜃̇3)(2𝜃̇1 + 𝜃̇2 +

𝜃̇3) sin(𝜃2 + 𝜃3) + 𝑙2𝜃̇3(2𝜃̇1 + 2𝜃̇2 + 𝜃̇3) sin 𝜃3) −

(
𝑚1

2
+ 𝑚2 + 𝑚3) 𝑙1 gcos 𝜃1 − (

𝑚2

2
+ 𝑚3) 𝑙2 gcos(𝜃1 + 𝜃2) −

𝑚3𝑙3𝑔

2
cos(𝜃1 + 𝜃2 + 𝜃3) ; 𝑏2 = −(

𝑚2

2
+ 𝑚3) 𝑙1𝑙2𝜃̇1

2 sin 𝜃2 +
𝑚3𝑙3

2
(−𝑙1𝜃̇1

2 sin(𝜃2 + 𝜃3) + 𝑙2𝜃̇3
2(2𝜃̇1 + 2𝜃̇2 + 𝜃̇3)sin 𝜃3) −

&(
𝑚2

2
+ 𝑚3) 𝑙2gcos (𝜃1 + 𝜃2) −

𝑚3𝑙3𝑔

2
cos (𝜃1 + 𝜃2 + 𝜃3) 

 

We define variables of system as: 
 

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]𝑇  
    = [𝜃1 − 𝑝𝑖/2 𝜃1̇ 𝜃2 𝜃2̇ 𝜃3 𝜃3̇]

𝑇 

(2) 

 

Linear equations have the form: 

 
𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (3) 

 

where: 
 

𝐴 =

[
 
 
 
 
 
 
 
0 1 0

𝜕𝜃̈1

𝜕𝑥1

𝜕𝜃̈1

𝜕𝑥2

𝜕𝜃̈1

𝜕𝑥3

0 0 0

0 0 0
𝜕𝜃̈1

𝜕𝑥4

𝜕𝜃̈1

𝜕𝑥5

𝜕𝜃̈1

𝜕𝑥6

1 0 0
𝜕𝜃̈2

𝜕𝑥1

𝜕𝜃̈2

𝜕𝑥2

𝜕𝜃̈2

𝜕𝑥3

0 0 0
𝜕𝜃̈3

𝜕𝑥1

𝜕𝜃̈3

𝜕𝑥2

𝜕𝜃̈3

𝜕𝑥3

𝜕𝜃̈2

𝜕𝑥4

𝜕𝜃̈2

𝜕𝑥5

𝜕𝜃̈2

𝜕𝑥6

0 0 1
𝜕𝜃̈3

𝜕𝑥4

𝜕𝜃̈3

𝜕𝑥5

𝜕𝜃̈3

𝜕𝑥6]
 
 
 
 
 
 
 

; 𝐵 =

[
 
 
 
 
 
 
 
0

𝜕𝜃̈1

𝜕𝑢

0
𝜕𝜃̈2

𝜕𝑢

0
𝜕𝜃̈3

𝜕𝑢 ]
 
 
 
 
 
 
 

. 

 

3. Control Method 

Equilibrium point is chosen as 

 
𝑥 = [0] (4) 

  

This equilibrium point is TOP position of LTLP 

in which all links are kept upward. At that position, 

moment on link 1 is zero to maintain system stable.   

 

If system is round working point in (4), LQR 

signal to control system is: 

 
𝑢(𝑡) = −𝐾𝑥(𝑡) (5) 

  

Basically, weighing matrices Q and R can be 

selected as eye matrix. However, genetic algorithm 

(GA) is used to find and optimize these matrixes. 

 

𝑄 =

[
 
 
 
 
 
𝐾1 0 0
0 𝐾2 0
0 0 𝐾3

  0    0  0 
  0    0  0 
  0    0   0  

 
0   0  0
0   0  0
0   0   0 

𝐾4 0 0
0 𝐾5 0
0 0 𝐾6 ]

 
 
 
 
 

;  𝑅 = 𝐾7 

 

(6) 

  

Matrix K is calculated as 

 

𝐾 = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅)= [K1 K2 … K6]T (7) 

 

4. Simulation 

Tab. 2. Initial state values 
Parameters Description Values 

𝜃1 angle of link 1 1.59 (rad) 

𝜃̇1 angle speed of link 1 0.05 (rad/s) 

𝜃2 angle of link 2 -0.02 (rad) 

𝜃̇2 angle speed of link 2 0 (rad/s) 

𝜃3 angle of link 3 0 (rad) 

𝜃̇3 angle speed of link 3 0 (rad/s) 

 

Detailed description: the biggest block “Linear 

Triple-linked Pendubot” contains parameters from Tab. 

1. Block “sample trajectory” at the top is used to 

investigate stability in fluctuating working regions. All 

signals about angle and angle speed will be feedback 

into block “Linear Triple-linked Pendubot” to 

accurately and continuously describe the state of the 

system throughout the survey period. This system is 

complicated and fast. Therefore, to ensure the best 

control of the system, we choose a slightly smaller 

sample time at 1ms. 

Before data is collected, it is divided by 6 to 

transfer the collected data into the workspace of the 

GA. This coefficient is based on the experience of 

experts to choose the division coefficient. 
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Fig. 2. Program simulation kinematic of model 

After 6000 generations, we find out suitable set 

of parameters in (6) as 
𝐾1=2.8415; 𝐾2=46.0730; 𝐾3=13.7604; 𝐾4=50.2287; 

𝐾5=42.4165; 𝐾6=29.7033; 𝐾7=13.8495 
(8) 

 
Fig. 3. Simulation program 

From Fig. 3, output signals are put into a 1x6 

matrix and time with a 6x1 K matrix. We get τ1 

feedback into the “Kinematic of model” block. The 

angle data is transferred to the “GA” block to collect 

data for GA to perform its searching loop to find the 

parameters in (6). Substituting them into (7), we will 

receive suitable K matrix. 

4.1. Verification with static working position 

3 arm pointing up 

With a sample time of 1ms and a simulation 

duration of 100 seconds, the results we obtained are 

very promising. 

 
Fig. 4. Angle 𝜃1(radian) compared to position 

𝜋 2⁄  radian 

From Fig. 4 we can see that the LQR controller 

has successfully stabilized this system. Although the 

stabilization time is quite long, up to 20 seconds. But 

this is understandable because each small change in τ1 

greatly affects the entire system. The established error 

after the simulation time returns to 0 rad, which shows 

that the system is completely stable. 

 

 
Fig. 5. Angle 𝜃2(radian) 

 
Fig. 6. Angle 𝜃3(radian) 

 

The parameters obtained from Fig. 5 and Fig. 6 

provide valuable insights. The LTLP system will 

eventually reach stability. A critical condition is that 

the deflection angle and angular velocity of link 3 must 

stabilize to 0 as quickly as possible. Although 

oscillations occur in the deflection angles of link 1 and 

link 2, they overshoot rapidly and exhibit strong 

fluctuations until link 3 stabilizes. Subsequently, link 1 

and link 2 gradually transition to a stable position. 

Throughout this process, the deflection angle and 

angular velocity of link 3 remain consistently at 0. 

Based on the above results, it is evident that this 

system has the potential to tackle more challenging 

simulations, such as motion trajectory tracking. 
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4.2. Verification Sine Wave Trajectory 

Tracking 

Based on Fig. 3, we have adjusted the "sample 

trajectory" block to generate a sine wave with a 

frequency of 0.5 rad/s and an amplitude of 0.3 rad. 

This adjustment allows for tracking position correction 

of link 1 and link 2, while ensuring that link 3 remains 

vertical, as per the data collected from static working 

position verification. 

 
Fig. 7. Angle 𝜃1(radian) compared to the sine wave 

Unlike a static working area, sine wave 

oscillates continuously. This system has the 

characteristic of slow response, according to 

parameters collected from static working position 

verification. Therefore, the sine wave we choose has a 

fairly low frequency with an oscillation of amplitude 

that is not too large. Changing the characteristics of the 

working area greatly affects the control ability of the 

LQR controller. Therefore, GA needs to be used for 

each solid point with different oscillation 

characteristics. For sine wave, optimal set of 

parameters we find is as follows: 
𝐾1 =    55.1509; 𝐾2 =   53.7119; 𝐾3 =   31.3145; 𝐾4 =   

9.9155; 𝐾5 =   48.6885; 𝐾6 =   56.6624; 𝐾7 =   

33.5203. 

( 9) 

 

From Fig. 7, link 1 of the system tracks the sine 

trajectory effectively, maintaining system stability 

despite a certain delay. 

 

 
Fig. 8. Angle  𝜃2(radian)

      Fig. 9. Angle 𝜃3(radian) 

 

 

The graph in Fig. 8 and Fig. 10, we can see that 

the values are almost symmetrical. The sum of the 

values of link 1 and link 2 angle is approximately 0. 

Throughout the process of link 1 attempting to follow a 

sinusoidal trajectory, link 2 remains consistently close 

to vertical alignment. From the graph in Fig. 9 we can 

see that the bar fluctuates very slightly and almost 

always remains vertical. These small oscillations are 

needed to counteract inertia while the whole system 

moves. 

 

4.3. Verification Orbit Tracking Ability with 

Pulse 
 

From Fig. 3, we adjust the "sample trajectory" 

block to generate a pulse wave with a period of 30s and 

an amplitude of 0.2 radian. The pulse signal needs to 

be tweaked a bit to make the sample signal more 

differentiable. Correct the orbital position of link 1 and 

link 2 while link 3 remains vertical based on data 

collected from static working position verification. 

 
Fig. 10. Angle 𝜃1(radian) compared to the pulse 

generator 

For signal pulses, burden on LQR controller 

increases significantly. The nature of state reversals 

being too fast, almost instantaneous, with large 

amplitudes, is the biggest challenge. Signal pulses are 

differentiable when they have long periods with not too 

large amplitudes and not too sudden state reversals. 

Therefore, GA algorithm needs to be used to find a 

more suitable set of parameters.  
 

𝐾1 =    88.2000; 𝐾2 =   33.1800; 𝐾3 =   64.0500; 𝐾4 =   

24.3100; 𝐾5 =   42.3500; 𝐾6 =   93.0900; 𝐾7 =   

0.0100. 
 

(10) 

With above set of control parameters, the 

system has stabilized according to the pulse trajectory 

with faster response time compared to the static 

working area. 

 
Fig. 11. Angle 𝜃2(radian) 
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Fig. 12. Angle 𝜃3(radian) 

From Fig. 11 and Fig. 12, response of angle 

behaves like a static operating point in each half cycle. 

Although distance between the current angle and next 

state angle are quite far apart. But still responsive and 

stable. However, unlike the static working point, 

sample signal pulse responds faster, so the control 

quality is not as good as the static point. 

 

5. Conclusions 

 
Through simulation, we have demonstrated the 

outstanding nonlinear control capabilities of the LQR 

controller. It not only achieves and rapidly maintains a 

stable state but also effectively tracks motion 

trajectories such as pulses and sine waves. These 

results serve as the initial groundwork for developing 

other nonlinear controllers for more intricate systems. 
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