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Abstract: In this paper, we will survey two controllers, a linear control (LQR) and sliding mode control (SMC) on a 

central axis ball and beam (B&B) – a single input-multiple output (SIMO) system through simulation and experiment. 

In experiment, we present a hardware platform using STM32F407 for this model. Beside simulation results, the results 

in experiment prove the effectiveness of both methods in different cases. Thence, through this research, the advantages 

and disadvantages of the two controllers are demonstrated for designers to select in suitable cases. 
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1. Introduction 

In automation control, various control algorithms 

are extensively studied to aid designers in selecting 

suitable controllers for systems and tuning them 

appropriately for each specific application. The linear 

Proportional-Integral-Derivative (PID) algorithm [1] is 

known for its simple structure, but parameter tuning 

relies solely on trial and error, posing challenges to 

system stability and lacking mathematical guarantees. 

The Linear Quadratic Regulator (LQR) algorithm [2] 

addresses this limitation by solving the Riccati equation, 

ensuring mathematical stability. However, its stability is 

confined to a limited "neighborhood" around the 

operating point, risking instability if this neighborhood is 

exceeded. Therefore, achieving local stability using these 

algorithms alone remains incomplete. 

In the case of trajectory tracking control, both 

linear PID and LQR algorithms are unsuitable due to 

their inherent simplicity, primarily suited for local 

stability. A feasible solution lies in non-linear 

algorithms, which can ensure mathematical stability 

through Lyapunov stability standards [3] and guarantee a 

working space across the entire system. Among non-

linear algorithms, SMC [4][5] is widely employed. In 

this project, our approach is to apply both LQR and 

SMC algorithms to a typical SIMO system - B&B [6] to 

compare the pros and cons as well as the stability quality 

of the linear LQR and non-linear SMC controllers. 

Searching for parameters for the SMC map is based on a 

genetic algorithm (GA) [7] 

2. Mathematical Model 

 B&B mathematical model is shown in Fig. 1 

below 

 
Fig. 1. Mathematical model of B&B [6] 

 The system consists of a horizontal bar (beam), a 

ball, a DC motor, the beam is wrapped with electric wire 

and supplied with a voltage to read the ball's position 

using ADC and determine the tilt angle. of the bar using 

Encoder. We control the position of the ball on the bar 

by changing the angle of inclination of the beam 

compared to the horizontal through a DC motor. This is 

a highly nonlinear system. Under the influence of 

gravity, with a small tilt angle of the bar, the ball will 

roll very quickly and be difficult to maintain in a 

balanced position. The stability of the system depends 

not only on the structure or system parameters but also 

on the input signal - the voltage supplied to the motor. 

The dynamic equation of B&B can be written as follows: 
2

2

sinB B

B
B

m p m g
p

J
m

R

 −
=

+

    (1)

2

2 cosb
t B B

m

B b

e K
K m pp m gp

R

m p J


 



−
− −

=
+

  (2)  

 where 
22

5
B BJ m R=

; 

21

12
b B bJ m L= ; ( )p t is position of 

ball relative to center of beam (m), Bm  is mass of ball 
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(kg), 
bm  is mass of beam (kg), 

bL  is length of beam (m), 

R  is diameter of ball (m), theta is rotation angle of 

beam relative to horizontal (rad), tK  is torque constant 

(Nm/A), bK  is reaction constant (V/(rad/s)), mR  is 

motor resistance ( ), JB is moment of inertia of ball 

( 2kgm ), Jb is moment of inertia of beam ( 2kgm ), e  is 

voltage supplied to motor (V).  

3. Controller Designing 

3.1. LQR Controller 

We set: 

  1 2 3 4

T T
x p p x x x x  = =   (3) 

The system mathematical equations can be written as: 
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From (4), (5), (6), (7), we see that equations system has 

the form  

( ),x f x e=       (8)  

where:  1 2 3 4

T
f f f f f=     

If we assume that system just operates around working 

point:  

 0 0 0 0 0 , 0x e= =     (9)  

, nonlinear B&B can be accepted to be equivalent to a 

linear form:  

x Ax Be= +       (10) 

 Tab. 1.System parameters 
Parameters Descriptions Value Units 

tK  Coefficient of motor 0.06494 N 

bK  Coefficient of motor 0.06494 V/rad/s 

mR  Coefficient of motor 6.83572   

Bm  Mass of ball 0.06 Kg 

bm  Mass of beam 0.38 Kg 

R  Radius of ball 0.01 m 

bL  Length of beam 0.35 m 

With the actual values of the model, at the working 

point, the results of matrices A, B can be calculated as: 
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LQR control signal is  

u Kx= −       (13)  

where  1 2 3 4K K K K K=  is control matrix, K is 

calculated from solving Ricatti equation. This work is 

complicated. Thence, Matlab software provides tools to 

do this 

( ), , , ,d dK dlqr A B Q R T=     (14) 

In Matlab, T is sample-time, Ad and Bd are calculated 

by using command:  

  ( )2 , ,d dA B c d A B T=     (15)  

We choose through GA: 
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  -110.45 -100.85 190.6 12.83K→ =  (17) 

Tab. 2. Blocks in the LQR simulation program in Fig. 2 
1 |Set points 

2 Data storage blocks 

3 Data display block 

4 Blocks help stop the simulation 

5 B&B description block 

6 Sum block 

7 LQR controller 
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Fig. 2. LQR controller 

3.2. Sliding Controller  

From equations (4), (5), (6) and (7), System of 

state equations is derived as follows:  
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Set the sample state for the system:  

 1 2 3 4d d d d dx x x x x=     (19) 

In there, 1 2 3 4, , ,d d d dx x x x  are the placed orbits of 

state variables 1 2 3 4, , ,x x x x  and 3 4 0d dx x= = , 1dx  is a 

function of time depends on the trajectory we want the 

ball to have follow 

Set: 
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Select sliding surface: 

1 1 2 3p pS e c e c e c e = + + +     (21)

( ) ( )4 1 3 2 1 1 3 2 2d dx c x c x x c x x= + + − + −   (22) 
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Substituting (24) into (23), we obtain:  

( ) ( )1 2S g x u h x= +      (25)  

Choose Lyapunov function: 

2

1

1

2
V S=       (26) 

1 1V S S=  (need to be selected <0)   (27) 

Select:  

( )1 1S sign S= −  with 0     (28) 

 

( )1 1 0V S sign S→ = −      (29) 

Substituting (28) into (25), we obtain: 

( ) ( ) ( )2 1g x u h x sign S+ = −    (30) 

( ) ( )

( )
1

2

sign S h x
u

g x

− −
→ =     (31) 

The parameters of SMC found from GA are: 

1 2 325.4, 42.61, 47.61, 12.78.c c c nuy= = − = − =  (32) 

Tab. 3. SMC control explanation for Fig. 3 
1 Set points 

2 Sum block 

3 Derivative block 

4 The parameters of SMC 

5 SMC controller 

6 Data display block 

7 B&B description block 

8 Blocks help stop the simulation 

9 Data storage block 
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Fig. 3. SMC control simulation

4. Simulation  

Case 1: Stable around the equilibrium position, 1 0dx =  

 
Fig. 4. Position of ball (m) 

In Fig. 4, although both methods have a setup 

time of 6 seconds, the smaller steady-state error of LQR 

compared to SMC indicates that LQR is more stable 

around the equilibrium  position than SMC. 

Case 2: Worksite changes corresponding to the change 

in set value, 1 0.08( )dx m=  

 
Fig. 5. Position of ball (m) 

In Fig. 5, with a stabilization time of 5s for both 

methods, LQR has a state error of 0.058m, while SMC 

has a state error of 0.0004m, demonstrating that the 

steady-state error of SMC is smaller than that of LQR, 

indicating that SMC is more stable further away from the 

equilibrium position than LQR.  

From Fig. 4 and Fig. 5, LQR only stabilizes well 

around the equilibrium point, with the steady-state error 

increasing as the distance from the equilibrium position 

increases. 

Case 3: The signal is set as a sine wave 

 
Fig. 6. Position of ball (m) 

In Fig. 6, system under SMC closely follows 

reference signal better than LQR. But, LQR has a delay 

of approximately 1.4s.  

 
Fig. 7. Angle of beam  (rad) 

 
Fig. 8. Voltage supplied to the motor 
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The control algorithm of SMC involves a sign() 

function, causing the voltage supplied to the motor to 

fluctuate due to chattering phenomenon in Fig. 8, where 

voltage supplying to motor in SMC oscillates 

continuously in the range of -8.12V to 8.12V. 

From observations above, linear controller LQR 

only stabilizes well around the equilibrium point, 

whereas the nonlinear SMC controller yields 

significantly better trajectory tracking results than  linear 

LQR controller. This is achieved because the desired 

trajectory has been incorporated into design process, 

calculating the sliding mode. Hence, the results indicate 

that there is no delay when applying SMC to the system. 

On the other hand, LQR is a linear algorithm that applies 

stable control at equilibrium point. To achieve trajectory 

tracking control, one can only actively offset set value by 

subtracting a corresponding value from state variable 1x  

before it is input of LQR controller. However, ensuring 

mathematical rigor for this method can be compromised, 

as evidenced by delay and error of the LQR controller 

5. Experiment 

An experimental model is shown in Fig. 9. The 

description of the image is as follows:  

 
Fig. 9. Empirical model B&B  

1.Motor DC and Encoder 2.The beam   

3.The ball   4. 12V power supply 

5.STM32F407  6.LM2596 

7.CP2102    8. IR2184 H-bridge  

Case 1: Stable around the equilibrium position, 

 
Fig. 10. Position of ball (m) 

 
Fig. 11. Angle of beam (rad) 

The experimental results indicate similar 

outcomes to the conclusions drawn from the simulation. 

In Fig. 10 and Fig. 11, the LQR stabilizes after 

approximately 8 seconds, while the SMC stabilizes after 

about 23s. The oscillation angle of the beam in the case 

of SMC ranges from -0.048 rad to 0.048rad, whereas for 

LQR, it oscillates between -0.024rad to 0.031rad. 

Case 2: Worksite changes corresponding to the change 

in set value, 1 0.08( )dx m=  

 
Fig. 12. Position of ball (m) 

In Fig. 12, the state error of LQR is greater than 

that of SMC when tracking a setpoint 0.08m away from 

the equilibrium position. 

 
Fig. 13. Angle of beam (rad) 
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Case 3: The signal is set as a sine wave 

 
Fig. 14. Position of ball (m)  

In Fig. 14, we observe that LQR tracks the 

reference signal with a delay of approximately 1.6 

seconds. Differently, SMC control makes position of ball 

follow well the trajectory without delay time. However, 

the vibration of system under SMC is bigger than under 

LQR control. 

 
Fig. 15. Angle of beam (rad) 

 

 
Fig. 16. Voltage supplied to the motor 

We can see that stability of LQR is better than 

SMC, as SMC exhibits chattering phenomenon as shown 

in Fig. 16, causing continuous motor oscillations.  

Thus, through the experiment, advantages and 

disadvantages of two control methods are shown. LQR 

control presents linear control stabilizes system well 

around the equilibrium point but less effectively at 

positions far from equilibrium than SMC. On the other 

hand, SMC represents a nonlinear controller exhibits 

better trajectory tracking performance compared to the 

nonlinear LQR controller. However, its stability is 

inferior to LQR due to the phenomenon of chattering. 

6. Conclusions 

In our research, by calculating and designing 

linear LQR and nonlinear SMC controllers for B&B 

system through simulation and experiment. we compare 

advantages, disadvantages, and control quality of two 

controllers. The comparison was conducted by assessing 

performance of both controllers in stable response 

around equilibrium position, tracking reference signal 

away from equilibrium position, and tracking a sine 

wave signal. We successfully designed and conducted 

comparative studies for both controllers. Through 

simulation and experimental results, non-linear SMC 

controller tracks reference signal better than linear LQR 

controller. The delay time is terminated in case of SMC 

but it still exists in case of LQR. However, its stability 

quality is inferior to LQR due to chattering phenomenon. 
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