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Abstract: A ball-on-wheel system is a recently developed model in the field of automatic control. It serves as a simple 

model, meeting the learning and algorithmic research needs of students. With this model, there are various algorithms 

available for system control, such as PID controllers, fuzzy PID controllers, and sliding mode controllers, among others. 

In this paper, we construct a mechanical model for the system. We choose the Linear Quadratic Regulator (LQR) 

algorithm to design for this system. Simulation and experimental results demonstrate the effective operation of the LQR 

controller for the inverted pendulum on a cart system. Additionally, tuning experiments indicate that the parameters 

have been verified and confirmed to be consistent with the theoretical tuning principles of the LQR controller. 
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1. Introduction 

In automatic control, algorithms are researched 

based on experimental and simulated system behaviors. 

Classic models like inverted pendulum [1], [2] and ball 

on beam [3], [4] serve as common platforms for research 

in automatic control. However, it's also essential to 

expand models to validate algorithms for different types 

of systems. One such developed model is Ball on Wheel 

system. In this system, a mechanical setup consists of a 

wheel driven by a motor encoder to rotate vertically, 

with a ball placed on wheel. Rotational motion of wheel 

ensures the ball stays on the wheel. This can be viewed 

as a single-input-single-output (SISO) system if only 

position of ball is of interest. Additionally, ball on wheel 

can be seen as a single-input-multiple-output (SIMO) 

system if both wheel rotation angle and ball position are 

considered. Researching and experimenting with basic 

algorithms on this model aids in standardizing model. 

Thus, with a verified and appropriate model, successful 

implementation of algorithms on model helps students 

understand and apply these algorithms to similar real-

world objects, such as balance systems for submarines or 

vibration-damping systems for high-rise buildings. 

Furthermore, with simple validated models, researched 

algorithms contribute to fundamental learning with 

minimal costs. 

In a study [5], a mechanical ball on wheel was 

built to investigate control both in simulation and 

experimentation. However, processing utilized DSP, 

which is expensive and challenging to equip in 

laboratories. Additionally, a sliding mode control (SMC) 

algorithm was presented and performed well in the 

simulation for ball on wheel. However, results were only 

verified through simulation and not experimentally 

validated. Therefore, a simple experimental model, 

capable of successfully validating control algorithms, 

remains crucial. STM32 is an integrated control board 

with mid-range cost and widespread popularity [6]. 

STM32 community support and usage are robust. Thus, 

developing simple control algorithms like LQR, 

validated in both simulation and experimentation, is 

appropriate, and Feedback linearization has been applied 

to various real-world  problems as well as laboratory 

experiments, such  as an electromagnetic system [7], an 

electromechanical system [8], and motors [9] – [14]. In 

this study, we construct an experimental ball on wheel 

model and algorithm research. We apply LQR algorithm 

to this system because it's a common algorithm in 

academic activities. Simulation results show the 

controller operates well. Additionally, experimental 

results demonstrate feasibility of this algorithm. Some 

surveys also indicate that parameter tuning in simulation 

and experimentation aligns with LQR theory. 

2. System Modeling 

 
Fig. 1. System modeling of ball on wheel 
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Tab. 1. System parameters 

Parameters Signs value 

Moment of the inertia 

of the wheel 
I  3 21.427 10 kg m− −  

Radius of the wheel r  0.11 m  

Mass of the ball 
bm  0.0569 kg  

Radius of the ball 
br  0.03285 m  

Resistance of the motor 
aR  2.2826   

Constant of the motor 
mK  0.0926 /N m A−  

Standard gravity g  20.981 /m s  

Other papers have demonstrated that the equation, 

based on the mathematical model (according to reference 

[5]), has the defined state vector as:  

 1 2 3 4 1 1 2 2[ ] [ ]T Tx x x x x    = =  (1) 

The state space of Ball on Wheel is written as: 
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3. LQR Control 

In this study, LQR algorithm is applied. If we 

consider ball on wheel as a SIMO system, voltage 

supplied to motor is determined by a single input. Wheel 

rotation angle and ball position are determined by a 

multiple output. Structure of LQR controller is used as 

follows: 

 
Fig. 2. The block diagram of the LQR control system 

In which, u is control signal to object; x are state 

variables of object; the object is the nonlinear system; 

LQR controller computes control signal  

From the state vector in section 2, we linearize 

the system at the equilibrium point, with input voltages 

and the angles theta1 and theta2 = 0, the matrices A and 

the matrices B can be calculated as follows: 
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We choose the weight matrix Q and R as follows: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Q

 
 
 =
 
 
 

 ; R = 1         (5) 

The LQR control signal for the system is 

calculated as  

u Kx= −                                 (6) 

With   
1 TK R B P−= , where P is the solution of 

the Riccati algebra: 
1 0T TPA A P PBR B P Q−+ − + =  (7) 

4. Simulation 

In our MATLAB simulation, we investigated the 

variation of the control signal (ut), the position of the 

ball relative to the reference position (x1), and the 

deviation angle of the wheel from the reference position 

(x3) with variations in the parameters of the control 

matrix Q and R. 

4.1. The Control Signal 

This study examines the fluctuations in the 

control signal (ut) concerning alterations in the control 

matrix R. The findings are succinctly depicted in Fig. 3, 

providing insight into the impact of varying R values on 

the control mechanism. 

This study investigates the influence of increasing 

values of the control matrix R (ranging from 0.1 to 10) 

on the stability and noise resilience of the control signal 

(ut). Results demonstrate a notable reduction in signal 

volatility as R values increase, with minimal noise 
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interference observed at R = 0.1. Furthermore, higher R 

values contribute to enhanced signal stability. 

 
Fig. 3. The control signal 

4.2.  Ball Position 

This study investigates the effect of increasing 

values of the control matrix Q, specifically the weight q1 

associated with the ball position in the state equation of 

the system. By systematically increasing q1 values 

(ranging from 1000 to 10,000,000), changes in the ball 

position are analyzed and presented in Fig. 4. 

Results demonstrate a clear correlation between 

increasing q1 values and a reduction in the initial wheel 

deviation. Specifically, the deviation decreases from -

0.00014 rad (q1 = 1000) to -0.00004 rad (q1 = 

10,000,000), indicating improved initial alignment with 

higher q1 values. Moreover, higher q1 values enhance 

the stability of the ball position, mitigating noise 

interference and ensuring smoother trajectory tracking. 

 
Fig. 4. Deviation angle of the ball 

4.3.  Wheel Position 

This study explores the impact of increasing 

values of the control matrix Q, particularly the weight q3 

associated with the wheel angle in the state equation of 

the system. Through systematic increments of q3 values 

(ranging from 100 to 10,000), the variations in the wheel 

angle are analyzed and presented in Fig. 5. 

The results demonstrate a clear correlation 

between increasing q3 values and a reduction in the time 

constant of the wheel angle response. Specifically, the 

time constant decreases from 2.04s (q3 = 100) to 0.82s 

(q3 = 10,000), indicating faster response dynamics with 

higher q3 values. Additionally, the initial deviation angle 

of the wheel decreases from 0.004 rad (q3 = 100) to 

0.001 rad (q3 = 10,000), reflecting improved initial 

stability with increasing q3. 

 
Fig. 5. Deviation angle of the wheel 

Control matrices Q and R weights play crucial 

roles in shaping behavior and performance of dynamic 

systems. Theoretical frameworks provide guidelines for 

selecting appropriate weights within these matrices to 

achieve desired control outcomes. This study evaluates 

consistency between theoretical expectations and 

simulated results regarding adjustments in Q and R. 

   5. Experiment 

   5.1. System Model 

  The ball on wheel system model is designed as 

shown in Fig. 6 and Fig. 7 [15]. 

Fig. 6. Ball on wheel viewed 

from the front 

 Fig. 7. Ball on wheel 

viewed from the side 

1. tennis ball. 

2. the wheel. 

3. infrared sensor SHARP GP2Y0A02YK0F. 

4. NISCA 24VDC motor. 

5. microprocessor stm32f4 

6. HI216 power circuit 

7. DC 24V source 
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Fig. 8. System block diagram [15] 

In the experimental section, we examined the 

variations in the control signal (ut), the position of the 

ball relative to the reference position (x1), and the 

deviation angle of the wheel from the reference position 

(x3) with variations in the parameters of the control 

matrix Q and R.. We evaluated the results in comparison 

to the simulation and theoretical predictions. 

5.2. The Control Signal 

In this section, we chose the values of the control 

matrix as R = 0.1 and R = 10. The results are presented 

in Fig. 9. 

This study investigates the impact of adjusting the 

control matrix R on the amplitude oscillation of the 

control signal (ut). Experimental results reveal that 

increasing R values (from 0.1 to 10) lead to a decrease in 

the amplitude oscillation of the control signal, with a 

reduction of approximately 2050 at the peak oscillation 

position. Moreover, higher R values contribute to 

improved stability of the control signal oscillations. 

 
Fig. 9. The control signal 

5.3. Ball Position 

This section presents an experimental assessment 

of the real-world deviation angle of a ball from its 

equilibrium position when altering the weight q1 

(representing the ball deviation angle in the system state 

equation) in the control matrix Q. The study examines q1 

values of 10,000 and 100,000, and the results are 

depicted in Fig. 10. 

Experimental results demonstrate that increasing 

q1 values lead to more stable deviation amplitude, with a 

reduction of 0.007 radians at the maximum oscillation 

position. Additionally, the initial deviation angle of the 

ball significantly decreased from 0.021 radians to 0.008 

radians with increasing q1 values. These findings align 

with theoretical predictions, confirming the efficacy of 

q1 adjustments in enhancing system stability. 

 
Fig. 10. Deviation angle of the ball 

5.4. Wheel Position 

This section presents an experimental 

investigation into the real-world deviation angle of the 

wheel from its equilibrium position when altering the 

weight q3 (representing the wheel deviation angle in the 

system state equation) in the control matrix Q. The study 

examines q3 values of 300 and 500, and the results are 

depicted in Fig. 11. 

With q3=300, the wheel deviation angle exhibits 

instability, deviating significantly from the equilibrium 

position. However, increasing q3 (to value 500) gives 

oscillation to wheel deviation angle around equilibrium 

position though it is still unstable due to hardware 

limitations. Nonetheless, this demonstrates the 

effectiveness of increasing q3 in managing the wheel 

deviation angle. 

 
Fig. 11. Deviation angle of the wheel 

5.5. Results 

The experimental results confirm that increasing 

the value of control matrix R leads to more stable 

oscillations of the control signal, reducing amplitude 

fluctuations. Additionally, variations in control matrix Q 

weights, particularly q1 and q3, directly influence 

system state equation components, affecting the ball and 

wheel deviation angles from the reference position (x1 

and x3, respectively). These observations align perfectly 

with theoretical expectations, highlighting the direct 

influence of Q and R adjustments on system behavior. 
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6. Conclusions 

This paper presents the successful development 

and experimental validation of a "ball on wheel" model, 

utilizing LQR algorithm. Prior to real-world 

implementation, the model was rigorously verified 

through both simulation and experimentation. The 

results demonstrate the effective equilibrium achieved by 

the ball on the wheel system through the classical LQR 

algorithm. The proposed "ball on wheel" model serves as 

a standardized experimental platform, offering an ideal 

foundation for students to validate subsequent 

algorithms. It is poised to find widespread application in 

laboratory settings for educational and research 

purposes, owing to its low cost, simple structure, and 

extensive community support. 
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