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Abstract: This study presents a simulation-based investigation into the application of a Cascade Proportional-Integral-

Derivative (PID) combined with Linear Quadratic Regulator (LQR) control scheme for managing the complexities of a 

Nonlinear Flexible Inverted Pendulum System (NFIPS). The NFIPS, characterized by nonlinear dynamics and structural 

flexibility, demands a sophisticated control strategy to achieve stable and precise performance. The proposed Cascade 

PID-LQR scheme integrates the advantages of PID for addressing nonlinearities and LQR for optimizing linearized 

dynamics. Through comprehensive simulations, the effectiveness of the proposed control scheme is evaluated, 

emphasizing its potential in enhancing stability, response speed, and robustness. The study contributes valuable insights 

into the application of advanced control methodologies in handling nonlinear and flexible systems, paving the way for 

further exploration and practical implementations in related domains such as robotics and mechatronics. 
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1. Introduction 

 

A nonlinear flexible inverted pendulum system 

(NFIPS) is a new model in family pendulum, which is an 

unpopular model in research. NFIPS is a highly 

nonlinear, unstable system, and hard to control in 

simulation or reality. NFIPS is built by adding a flexible 

single link, which is a flexible link with an end weight, 

to a single inverted pendulum system (SIP). 

With SIP, this is a classic inverted pendulum 

system and is widely used in teaching and researching 

control theory around the world. SIP consists of a stiff 

single rod mounted on a linear cart whose axis of 

rotation is perpendicular to the direction of motion of the 

cart. Currently, it is effortless to find research on SIP 

with various algorithms, such as a PID controller [1], [2], 

[3], [4], [5], a LQR controller [6], [7], a fuzzy controller 

[8], [9], a neural network controller [10], [11], etc. As 

for a flexible single inverted pendulum system (FIP), this 

system is less frequently proposed and researched. 

Instead of using a stiff link, FIP is built by using a 

flexible and resilient link with an end weight. Currently, 

a few research groups investigated and published this 

system. Such as FIP was researched and approached by 

applying linear quadratic control using a personal 

computer [12]. Besides, FIP was also proposed and 

implemented to apply a robust control approach for 

flexible inverted pendulum [13]. Another study 

presented a dynamic model of a planar flexible inverted 

pendulum system under the frame of multi-body 

dynamics in a floating frame of reference formulation 

[14]. In this research, the designed controller with a 

simple low-pass filter for the flexible inverted pendulum 

was validated by the simulation of a simple flexible 

pendulum sample.  

Because NFIPS is made up of the characters of 

SIP and FIP, which are presented above. Therefore, 

NFIPS is more complex and become a big problem 

challenges researchers in control theory field. Currently, 

there is very little research on NFIPS. Consequently, the 

authors decided to explore this system and apply 

Cascade PID-LQR control strategy. The main goal of 

this research is to calculate mathematical modeling 

system of NFIPS and implement Cascade PID-LQR for 

NFIPS in simulation with disturbance. 

The structure of this paper is organized as 

follows: Part 1 introduces NFIPS, and relevant papers 

are published around the world. In Part 2, mathematical 

modeling of NFIPS is investigated and presented. In Part 

3 of the article, Cascade PID-LQR controller is proposed 

and designed for NFIPS.  The simulation results of 

NFIPS with Cascade PID-LQR controller are presented 

in Part 4. And finally, the conclusion and development 

directions of the article are presented in Part 5.  

 

2. Mathematical Modeling of NFIPS 

 

NFIPS is a highly nonlinear, unstable, and flexible 

system. This system has two main components: the cart 

operates with a servo motor. Besides, the flexible pendulum is 

a flexible link with an end weight and the stiff pendulum is the 

long pendulum.  

The mathematical modeling of NFIPS involves 

describing the dynamic behavior of the system using equations 

in matrix form (1) – (13).  Besides, NFIPS structure is shown 

in Fig. 1, definitions of dimensions and rotation angles 

defining pendulum position are also shown in Tab. 1. 
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Fig. 1. Flexible pendulum conventions 

 

Tab. 1. The NFIPS structure characteristics and system 

parameters 

System 

Structure 

Characteristic 
Definition Value 

cx  Position of cart na 

  Angle of stiff pendulum na 
  Angle of flexible pendulum na 

cF  An applied force na 

defx  
Distance between the tip of 

stiff pendulum and the tip of 

flexible pendulum 

na 

cm  Mass of cart 0.085 (kg) 

spm  Mass of stiff pendulum 0.15 (kg) 

spl  Distance of the center of mass 0.14 (m) 

fpm  Mass of flexible pendulum 0.007 (kg) 

fpl  Distance of the center of mass 0.1 (m) 

sK  
Stiffness of the flexible 

pendulum 
0.21 

g  Gravity  9.81(m/s2) 
  

According to [15], the dynamical equation is 

calculated and presented in the form of an equation of 

state as follows: 

 

11 12 13 1
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31 32 33 3

0

0
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H H H M




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 (1) 

where 
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 Referring to [15], the force applied to the cart of 

NFIPS, which is produced by the servo motor and can be 

expressed by the following equation. 

 
g g t g m c

c m m

m mp mp

K K K K x
F V

R r r




 
= − +  

 

 (13) 

 Therefore, the state equation (1) and 

equation (13) present the dynamic equations of 

NFIPS. The parameters of the servo motor are 

listed in  

Tab. 2. 

 

Tab. 2. Parameters of servo motor 

Symbol Description Value 

g  
Planetary geabox 

efficiency 
0.9 

gK  
Planetary gearbox gear 

ratio 
3.71 

tK  
Motor current-torque 

constant 

7.68*10-3  

(N m/A) 

mK  Motor back-emf constant 
7.68*10-3 

(V/(rad/s)) 

mpr  Motor pinion radius 6.35*10-3 (m) 

m  Motor efficiency 0.69 

mR  Motor armature resistance 2.6 (Ω) 
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After calculating the dynamic equation of NFIPS, 

we implement this system to linearize. For NFIPS, the 

state of the system is defined by: 

  
T

c cx x x    =  (14) 

And the dynamic equation of NFIPS is linearized 

about the zero-angle position. 

 

 
0; 0; 0;

0; 0; 0

c cx x 

  

= = =

= = =
 (15) 

The linearized state equations of NFIPS are 

shown below: 

 
x Ax Bu

y Cx

= +


=
 (16) 

 Matrices A and B are calculated by equations (17) 

and (18). The values of them are presented in Appendix 

A of this paper.  
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 Subsequently, the controllability of NFIPS is 

discussed. T matrix is established to examine the 

controllability of this system. The T matrix is as follows: 

 
2 3 4 5[ A A A A A ]T B B B B B B=  (19) 

From Tab. 1,  

Tab. 2, equations (17), (18). The rank and det(T) 

of NFIPS are calculated as follows:  

 8( ) 6; 4de 2t( 0 72 1) .rank T T e= += −  (20) 

 Because det(T) does not equal zero and the 

matrix's rank is equal to the number of systematic 

degrees. This makes the system controllable. 

 

3. Cascade PID-LQR controller 
 

NFIPS is a nonlinear dynamic with structural 

flexibility. Consequently, a combined controller is 

proposed, and this is a Cascade PID-LQR controller, 

which is designed by combining PID algorithm and LQR 

algorithm. PID algorithm is a popular and widely used in 

various control system. Form of the PID controller is 

given by  

 

 ( ) I
C P D

K
G s K K s

s
= + +  (21) 

In addition, LQR algorithm is also appreciated 

and commonly used in controlling balance in many 

systems. The control law of LQR controller is given as: 

  

 ( ) ( )u t Kx t= −  (22) 

The Cascade PID-LQR controller scheme for 

NFIPS is presented as follows:  

 
Fig.  2. Simulink model for NFIPS with Cascade PID-

LQR controller 

 The selected parameters for the PID controller are 

as follows: 

 

 

1 1 1

2 2

3 3

2

3

2; 0.5; 0.1

1; 0.08; 0.02

1; 0.01; 0.05

P I D

P I D

P I D

K K K

K K K

K K K

= = =

= = =

= = =

 (23) 

Q, R matrices of LQR controller are chosen as 

follows:  

 

4 3 3{10 , 0.1, 10 , 0.1, 10 , 0.1}

R=1

Q diag=
 (24) 
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 K control matrix is calculated by lqr(A,B,Q,R) 

command in MATLAB. The resulting matrix is shown 

below as follows: 

 

 
(1 6) [-100.0000 -62.0681  

151.6449  33.5191   20.7312   -1.3042]

K  =
 (25) 

 

4. Validation 

 

4.1. Stability under Varying Disturbance 

Magnitudes 

 

The key point of this subsection is to evaluate the 

controller's performance under varying disturbance 

magnitudes. 

 

 
Fig.  3. The response of NFIPS under disturbance input 

The results show that the Cascade PID-LQR 

controller can effectively control NFIPS under a 

disturbance input. It takes NFIPS approximately 40 

seconds to be stabilized. The position of cart, the angle 

of the stiff pendulum, and the angle of the flexible 

pendulum can both remain balanced in zero-angle 

position. In addition, input disturbances affected the 

control quality, with the position of the cart and the 

angle of the stiff pendulum being more affected. The 

values of two output parameters fluctuate within the 

range of [-0.05; 0.05] (rad). However, affection for an 

angle of the flexible pendulum is not significant. 

 

4.2. Closed-Loop Stability and Tracking 

Performance 

 

Main objective of this subsection is to evaluate 

the closed-loop stability and tracking performance of the 

Cascade PID-LQR control scheme for NFIPS under 

normal operating conditions without disturbances. This 

test case aims to verify the controller's performance 

under normal conditions, providing insights into its 

ability to maintain stability and achieve accurate 

trajectory tracking without the influence of external 

disturbances.  

The time for NFIPS to stabilize is very similar to 

the case which is analyzed above. It also takes NFIPS 

approximately 40 seconds to stabilize. In this case, the 

values of four output parameters are not appeared to 

fluctuate from this system which is stabilize. 

 
Fig.  4. The response of NFIPS without disturbance 

 

4.3 Disturbance and Pulse Generator Input 

 

Main point of this test case is to evaluate the 

robustness and performance of the Cascade PID-LQR 

control scheme for a Nonlinear Flexible Inverted 

Pendulum System under the influence of disturbance and 

pulse generator inputs. This test case aims to assess the 

controller's performance in the presence of disturbances 

and pulse inputs, providing insights into its robustness 

and disturbance rejection capabilities. 

 

 
Fig.  5. The response of NFIPS under disturbance and 

pulse generator inputs 

In this case, under disturbance and pulse 

generator inputs, the response of the NFIPS is greatly 

affected. Specifically, the error of the cart position is 

sometimes up to 0.18 (rad) compared to zero. For the 

angle of the stiff pendulum, the value of it fluctuates 

within the range of [-0.05;0.05] (rad). In general, the 

response of the angle of the stiff pendulum is relatively 

like two cases which are presented above. Likewise, the 

angle of the flexible pendulum is also not much affected 

by disturbance and pulse generator inputs.  
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In all three cases which are presented above, the 

cost function of this system consistently approaches 

zero. This shows that the cascade PID-LQR controller 

has good control the system and helps cost function 

always reach the value 0. 

 

5. Conclusions 

 

In conclusion, the study on the application of the 

Cascade PID combined with LQR control scheme for the 

NFIPS in simulation has yielded valuable insights into 

the system's control performance. The integration of 

Cascade PID and LQR controllers has shown promising 

results in achieving stability and effective trajectory 

tracking for the NFIPS. 

Through the simulation experiments, the authors 

observed that the Cascade PID-LQR control scheme 

effectively mitigated the challenges posed by the 

nonlinear and flexible nature of the inverted pendulum 

system. The combination of PID control with the LQR 

further enhanced the system's overall control 

performance. 

The controller demonstrated its capability to 

stabilize the NFIPS and accurately follow predefined 

reference trajectories. The closed-loop stability was 

maintained, showcasing the effectiveness of the control 

strategy in handling inherent nonlinearities and 

uncertainties present in the system. 

While the study was limited to simulation 

environments, the positive outcomes suggest the 

potential applicability of the Cascade PID-LQR control 

scheme to real-world scenarios with a NFIPS. Future 

work may involve experimental validations and 

parameter tuning to further refine the controller for 

practical implementation. Overall, the study contributes 

to the understanding and development of advanced 

control strategies for challenging dynamic systems. 

 

6. Appendix A 

 

The values of matrices A and B are as follows: 
A = [ 0    1                 0               0         0                      0 

         0     -35.1281    2.1568      0         0.2542             0.0035 

         0     0                0               1         0                       0 

         0     -69.6836    23.7460    0         2.7993             0.0070 

         0     0                0               0         0                      1 

        0     -2.2008      -0.1013     0        -259.3841        0.0002] 

B = [ 0; 5.4018; 0; 10.7156; 0; 0.3384] 

 

 The program of mathematical modeling of NFIPS 

is given below: 
clc 

clear all 

close all 

% Flexible inverted pendulum system - 

FLEXIP% 

% LQT control of FLEXIP % 

% Modeling script % 

% 1st version on Dec 24 2023 % 

  

%% system paras %% 

% x1 - xc: cart position 

% x2 - alpha: angle of beam 

% x3 - gamma: angle of bob 

% p1 - xc_dot 

% p2 - alpha_dot 

% p3 - gamma_dot 

% x = [x1 x2 x3 dx1 dx2 dx3] 

syms mc msp mfp Jsp Jfp Lp Ks Lsp Lfp g ng 

Kg Kt Km rmp nm Rm  

syms x1 x2 x3 p1 p2 p3 Vm x4 x5 x6 

  

%% modeling 

m11=mfp+mc+msp; 

m12=-msp*Lsp*cos(x2)-mfp*Lsp*cos(x2); 

m13=0; 

m21=-msp*Lsp*cos(x2)-mfp*Lsp*cos(x2); 

m22=Jsp+mfp*(Lsp)^2+msp*(Lsp)^2; 

m23=mfp*Lfp*sin(x3)*Lsp*sin(x2)+mfp*Lfp*co

s(x3)*Lsp*cos(x2); 

m31=-mfp*Lfp*cos(x3); 

m32=mfp*Lfp*sin(x3)*Lsp*sin(x2)+mfp*Lfp*co

s(x3)*Lsp*cos(x2); 

m33=Jfp+mfp*(Lfp)^2; 

% 

n11=((ng*Kg*Kt)/(Rm*rmp))*((Kg*Km)/rmp); 

n12=(msp*Lsp*sin(x2)+mfp*Lsp*sin(x2))*p2; 

n13=(mfp*Lfp*sin(x3)*p3-mfp*Lfp*cos(x3)); 

n21=0; 

n22=0; 

n23=(-

mfp*Lfp*sin(x3)*Lsp*cos(x2)+mfp*Lfp*cos(x3

)*Lsp*sin(x3))*p3; 

n31=0; 

n32=(-

mfp*Lfp*cos(x3)*Lsp*sin(x2)+mfp*Lfp*sin(x3

)*Lsp*cos(x3))*p2; 

n33=0; 

% 

k11=0; 

k21=-msp*g*Lsp*sin(x2)-mfp*g*Lsp*sin(x2); 

k31=Ks*x3-mfp*g*Lfp*sin(x3); 

% 

u1=((ng*Kg*Kt)/(Rm*rmp))*(nm*Vm); 

%% 

M= [m11 m12 m13; 

    m21 m22 m23; 

    m31 m32 m33]; 

N= [n11 n12 n13; 

    n21 n22 n23; 

    n31 n32 n33]; 

K= [k11; 

    k21; 

    k31]; 

U=[u1;0;0]; 

  

H = M*[x4;x5;x6]+N*[p1;p2;p3]+K-U; 

h1=H(1); 

h2=H(2); 

h3=H(3); 

[x4,x5,x6]=solve(h1,h2,h3,x4,x5,x6) 
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