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Abstract: This paper surveys the Linear Quadratic Estimation (LQE) and Model Predictive Control (MPC) discrete 

control methods applied to the Acrobot system. Both techniques aim to achieve and maintain a balanced position for the 

Acrobot. Through evaluation and comparison, we highlight their strengths, limitations, and potential applications, 

offering insights for future robotic control research. 

Keywords: acrobot, LQR control, MPC control, discrete control. 

 

1. Introduction 

The Acrobot, a benchmark model in control 

research [1]-[4], is intricately described by its bifurcated 

structure, visually represented in Fig. 1. This system 

encompasses two primary links: the lower link (Link1), 

and the elevated link (Link2), which are interconnected 

through an active joint, managed by a control motor. 

Uniquely, Link1 freely maneuvers around a passive joint 

at its terminal point, adding an additional layer of 

dynamical complexity and thus, presenting a 

sophisticated control challenge that has been addressed 

by various methodologies in the field. 

Over time, a myriad of control strategies, from 

Reinforcement Learning (RL) to classical PID [2] 

controllers and Fuzzy Logic[3], have been employed to 

navigate the multifaceted control landscape of the 

Acrobot, each yielding its own set of insights and 

challenges. RL, while notable for its adaptive 

capabilities, often demands substantial computational 

resources and training time, whereas PID controllers and 

Fuzzy Logic, despite their computational efficiency and 

simplicity, may struggle to maintain stability due to the 

Acrobot's non-linearities and underactuated dynamics. 

In this context, research on Linear LQE [5]- [6] 

and MPC [7]-[8] has emerged, both presenting 

formidable contenders in addressing the control 

challenges of the Acrobot, each offering a unique 

approach and distinctive advantages. This paper aims to 

delve comprehensively into exploring and contrasting 

LQE and MPC, evaluating their theoretical 

underpinnings, practical applications, and performance 

metrics in controlling the Acrobot, ultimately seeking to 

unearth new insights and guide future research and 

applications in robotic control strategies. 

 

 

2. Mathematical Model 

In Fig. 1, the x-axis of the Cartesian coordinate 

system is established as the baseline for zero potential 

energy. 

 
Fig. 1. Mathematical model of Acrobot [1] 

Let 𝑋𝑖 = [ 𝑋𝑖
𝑥, 𝑋𝑖

𝑦
]𝑇 ∈  𝑅2 , represent the absolute 

position of the Center of Mass (COM) of the ith link, as 

derived in [5]: 

𝑋1 = [
𝐿𝑐1𝑠𝑖𝑛𝑞1
𝐿𝑐1𝑐𝑜𝑠𝑞1

] 
(1) 

 

𝑋2 = [
𝐿1𝑠𝑖𝑛𝑞1 + 𝐿𝑐2𝑠𝑖𝑛(𝑞1 + 𝑞2)
𝐿1𝑐𝑜𝑠𝑞1 + 𝐿𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2)

] 
(2) 

Consequently, the expressions for kinetic energy, 

denoted as 𝐾(𝑞, 𝑞̇) and potential energy, symbolized as 

𝑉(𝑞), are as follows: 

𝐾(𝑞, 𝑞̇) =
1

2
∑[ 𝑚𝑖||𝑋𝑖̇ ||

2 + 𝐽1𝑞̇1
2 + 𝐽2( 𝑞̇1

2

𝑖=1

+ 𝑞̇2)
2

=
1

2
[ 𝑞̇1 𝑞̇2]𝑀(𝑞2) [

𝑞̇1
𝑞̇2
]] 

(3) 

where 

𝑀(𝑞2)

= [
𝑎1 + 𝑎2 + 2𝑐𝑜𝑠𝑎3𝑐𝑜𝑠𝑞2 𝑎2 + 𝑎3𝑐𝑜𝑠𝑞2

𝑎2 + 𝑎3𝑐𝑜𝑠𝑞2 𝑎2
] 

(4) 
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{
 
 

 
 
𝑎1 = 𝑚1𝐿𝑐1

2 +𝑚2𝐿1
2 + 𝐽1

𝑎2 = 𝑚2𝐿𝑐2
2 + 𝐽2

𝑎3 = 𝑚2𝐿1𝐿𝑐2
𝑎4 = (𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔

𝑎5 = 𝑚2𝐿𝑐2𝑔

 

(5) 

 

𝑉(𝑞)  = 𝑚1𝑔𝑋1
𝑦
+𝑚2𝑔𝑋2

𝑦

= 𝑎4𝑐𝑜𝑠𝑞1 + 𝑎5𝑐𝑜𝑠(𝑞1 + 𝑞2) 

(6) 

 

When considering friction as negligible, by 

applying Lagrangian function to Acrobot, we obtain 

expression for dynamic equation of mechanical system 

as follows: 
𝑑

𝑑𝑡
[
𝜕𝐿(𝑞, 𝑞̇)

𝜕𝑞̇𝑖
] −

𝜕𝐿(𝑞, 𝑞̇)

𝜕𝑞𝑖
= 𝜏𝑖  , 𝑖 =  1,2, 

(7) 

 

where 𝐿(𝑞, 𝑞̇) = 𝐾(𝑞, 𝑞̇) − 𝑉(𝑞)  and 𝜏1 = 0 . Eq.(7) 

equivalent to  

𝑀(𝑞2)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = [
0
𝜏2
] 

(8) 

From (8) , we have  

𝑞̈ = −𝑀−1𝐶𝑞̇ − 𝑀−1𝐺 +𝑀−1𝑢 (9) 

where 

𝑞 = [𝑞1 𝑞2]
𝑇 (10) 

𝐶(𝑞, 𝑞̇) = [
−𝑎3𝑞̇2𝑠𝑖𝑛𝑞2 −𝑎3(𝑞̇1 + 𝑞̇2)𝑠𝑖𝑛𝑞2
𝑎3𝑞̇1𝑠𝑖𝑛𝑞2 0

] 
(11) 

𝐺(𝑞) = [
−𝑎4𝑠𝑖𝑛𝑞1 − 𝑎5𝑠𝑖𝑛(𝑞1 + 𝑞2)

−𝑎5𝑠𝑖𝑛(𝑞1 + 𝑞2)
] 

(12) 

 

𝑢 = [
0
𝜏2
] 

(13) 

 

From (9) , we have  

{
𝑞̈1 = 𝑓1(𝑞1,𝑞2, 𝑞̇1, 𝑞̇2, 𝑢)

𝑞̈2 = 𝑓1(𝑞1,𝑞2, 𝑞̇1, 𝑞̇2, 𝑢)
 

(14) 

 

We proceed to set variables in order to reduce the 

order of the system: 

{

𝑥1 = 𝑞1
𝑥2 = 𝑞̇1 = 𝑥̇1
𝑥3 = 𝑞2

𝑥4 = 𝑞̇2 = 𝑥̇3

 

(15) 

 

From (14) , we obtain: 

 {

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢)

𝑥̇3 = 𝑥4
𝑥̇4 = 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢)

 

(16) 

 

 

From equation set (16) , linearization around the 

operating point yield 𝑥0 = [ 0 0 0 0]
𝑇. Specifically, it is 

: x1 = 0 ; x2 =0 ; x3 = 0 ; x4 = 0 ; u=0 

⇒ |

x?1
x?2
x3?
x?4

| |

𝑥̇1
𝑥̇2
𝑥3̇
𝑥̇4

|= A[

x1
x2
x3
x4

] [

𝑥1
𝑥2
𝑥3
𝑥4

]+ B*u 

(17) 

 

⇒ The system of linear equations, when operating 

around the equilibrium point, is defined as: 

Matrices A and B are determined as follows. 

 

A

=

[
 
 
 
 
 
 

0 1 0 0
𝜕𝑓1
𝜕𝑥1𝜏=0;𝑥=𝑥0

𝜕𝑓1
𝜕𝑥2𝜏=0;𝑥=𝑥0

𝜕𝑓1
𝜕𝑥3𝜏=0;𝑥=𝑥0

𝜕𝑓1
𝜕𝑥4𝜏=0;𝑥=𝑥0

0 0 0 1
𝜕𝑓2
𝜕𝑥1𝜏=0;𝑥=𝑥0

𝜕𝑓2
𝜕𝑥2𝜏=0;𝑥=𝑥0

𝜕𝑓2
𝜕𝑥3𝜏=0;𝑥=𝑥0

𝜕𝑓2
𝜕𝑥4𝜏=0;𝑥=𝑥0]

 
 
 
 
 
 

 

B =

[
 
 
 
 
 

0
𝜕𝑓1
𝜕𝜏 𝜏=0;𝑥=𝑥0

0
𝜕𝑓2
𝜕𝜏 𝜏=0;𝑥=𝑥0]

 
 
 
 
 

 

(18) 

(where A and B are linear matrices) 

Variable names and parameters are listed in Tab. 1. 

Tab. 1. System parameters 

Symbols Meaning Value 

𝑞1 Angle of Link1  

𝑞2 Angle of Link2  

𝑞̇1 Angular velocity of Link1  

𝑞̇2 Angular velocity of Link2  

𝑚1 Mass of Link1 0.8 Kg 

𝐿1 Length of Link1 0.18 m 

𝐿𝑐1 Distance from Passive joint to 

center of mass of the Link1 
0.11 m  

 

𝑚2 Mass of Link2 0.2 Kg  

𝐿2 Length of Link2 0.18 m  

𝐿𝑐2 Distance from Active joint to 

center of mass of the Link2 
0.09 m  
 

𝐽1 Moment of Inertia Link1 0.0022 kg.𝑚2
  

𝐽2 Moment of Inertia Link2 0.00054 kg.𝑚2 

𝑔 Gravitational acceleration 9.81 m/s23 

𝜏2 Torque applied to Active joint  

3. Design of the controller  

3.1. Convert from Continuous State Space 

Equation to Discrete 

To delve deeper, refer to [5], we are starting with: 
𝑥̇ =  𝐴𝑥 +  𝐵𝑢  

By applying the Laplace transform to each side: 

𝑠𝐼𝑋(𝑠) −  𝑥(0)  =  𝐴𝑋(𝑠) + 𝐵
𝑢

𝑠
 

𝑋(𝑠)  = (𝑠𝐼 − 𝐴)−1𝑥(0)  + (𝑠𝐼 − 𝐴)−1𝐵
𝑢

𝑠
 

(19) 

 

By applying the inverse Laplace transform to 

each side, we obtain: 

𝑥(𝑡)  = ∫ 𝑒𝐴𝜏𝑑𝜏𝐵𝑢 
𝑡

0

+ 𝑒𝐴𝑡𝑥(0) 
(20) 

 

If A is invertible, we can further simplify as : 

𝑥(𝑡)  = ∫ 𝐼𝑒𝐴𝜏𝑑𝜏𝐵𝑢 
𝑡

0

+ 𝑒𝐴𝑡𝑥(0) 
(21) 

 

 

𝑥(𝑡)  = 𝐴−1(𝑒𝐴𝑡 − 𝐼)𝐵𝑢 + 𝑒𝐴𝑡𝑥(0) (22) 

We assume u remains constant from 0 to t, valid 

only for 0 ≤t≤ Δt . Specifically, we consider: 
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𝑥(△ 𝑡) = 𝐴𝑑𝑥(0) + 𝐵𝑑𝑢) (23) 
or  

𝑥[1] = 𝐴𝑑𝑥[0] + 𝐵𝑑𝑢) 
We determine the state-space representation of 

the system for the first sampling period through 𝐴𝑑 and 

𝐵𝑑 . If A is non-invertible, use the Moore-Penrose inverse. 

System S, with defined inputs and outputs, is considered 

time-invariant if the corresponding conditions are 

satisfied. Systems described by linear differential 

equations with constant coefficients all possess this 

characteristic. 

Within the span of [t,t+Δt], u is maintained at a 

constant value. Specifically, this informs us. 

𝑥((𝑘 + 1) △ 𝑡) = 𝐴𝑑𝑥(𝑘 △ 𝑡) + 𝐵𝑑𝑢) (25) 

Or: 

𝑥[ 𝑘 +  1 ]  =  𝐴𝑑𝑥[𝑘 ]  + 𝐵𝑑𝑢[𝑘] (26) 

3.2. Designing a MPC Controller 

MPC is an advanced control strategy based on a 

system model. At each step, it predicts the system's 

future behavior, solves an optimization problem to 

determine the optimal control signal, and then applies 

this control action. 

For the state model of the system with a single 

input and a single output, the representation is as 

follows: 

𝑥[ 𝑘 +  1| 𝑘 ]  =  𝐴𝑑𝑥[𝑘 ]  +  𝐵𝑑𝑢[𝑘] (27) 

𝑦[𝑘| 𝑘]  =  𝐶𝑥[𝑘] (28) 
Now, we can determine the system's output at 

each stage based on the state matrix. To start, define np 

as the prediction period, representing how many stages 

ahead we anticipate the system's response. Similarly, nc 

is the control period, indicating how many stages we aim 

to adjust the control sequence. It's essential that np must 

be greater than or equal to nc. In this situation, they hold 

the same value, so n = np = nc. 

Presuming we're aware of the system's starting 

state x[k], we set u[k] as the control input for the kth 

interval. Then: 

𝑥[ 𝑘 +  1| 𝑘 ]  =  𝐴𝑑𝑥[𝑘 ]  +  𝐵𝑑𝑢[𝑘] (29) 

𝑥[ 𝑘 +  2 | 𝑘 ]  = 𝐴𝑑
2𝑥[𝑘]  + 𝐴𝑑𝐵𝑑𝑢𝑘

+ 𝐵𝑑𝑢[𝑘 + 1] 
(30) 

 

𝑥[ 𝑘 +  𝑛 | 𝑘 ] = 𝐴𝑑
𝑛𝑥[𝑘]  + 𝐴𝑑

𝑛−1𝐵𝑑𝑢[𝑘]  
+  𝐴𝑑

𝑛−2𝐵𝑑𝑢[𝑘
+ 1]+. . . 𝐵𝑑𝑢[𝑘 + 𝑛 − 1] 

(31) 

 

 

The predicted output variables will be calculated: 

𝑦[𝑘 + 1| 𝑘 ] = 𝐶𝑥[𝑘 + 1]
= 𝐶𝐴𝑑𝑥[𝑘 ]  + 𝐶𝐵𝑑𝑢[𝑘] 

(32) 

𝑦[𝑘 + 2| 𝑘 ] = 𝐶𝐴𝑑
2𝑥[𝑘]  + 𝐶𝐴𝑑𝐵𝑑𝑢𝑘
+ 𝐶𝐵𝑑𝑢[𝑘 + 1] 

(33) 

𝑦[𝑘 + 𝑛| 𝑘 ] = 𝐶𝐴𝑑
𝑛𝑥[𝑘]  + 𝐶𝐴𝑑

𝑛−1𝐵𝑑𝑢[𝑘]  
+  𝐶𝐴𝑑

𝑛−2𝐵𝑑𝑢[𝑘
+ 1]+. . . 𝐶𝐵𝑑𝑢[𝑘 + 𝑛 − 1] 

(34) 

 

Now, if we define: 

𝑌 = [ 𝑦[𝑘 + 1|𝑘] 𝑦[𝑘 + 2|𝑘]. . . 𝑦[𝑘 + 𝑛|𝑘] ]𝑇 (35) 

 

𝑈 = [ 𝑢[𝑘]  𝑢[𝑘 + 1]. . . 𝑢[𝑘 + 𝑛 − 1] ]𝑇 (36) 

We have 

𝑌 = 𝐹𝑥[𝑘]  + 𝐺𝑈 (37) 

Here: 

𝐹 =

[
 
 
 
 
 
𝐶𝐴𝑑

1

𝐶𝐴𝑑
2

𝐶𝐴𝑑
3

⋮
𝐶𝐴𝑑

𝑛]
 
 
 
 
 

 

(38) 

 

𝐺 =

[
 
 
 
 

𝐶𝐵𝑑 0 0 . . . 0

𝐶𝐴𝑑
1𝐵𝑑 𝐶𝐵𝑑 0 . . . 0

𝐶𝐴𝑑
2𝐵𝑑 𝐶𝐴𝑑

1𝐵𝑑 𝐶𝐵𝑑 . . . 0
⋮ ⋮ ⋮ . . . . . .

𝐶𝐴𝑑
𝑛−1𝐵𝑑 𝐶𝐴𝑑

𝑛−2𝐵𝑑 𝐶𝐴𝑑
𝑛−3𝐵𝑑 . . . 𝐶𝐵𝑑]

 
 
 
 

 

(39) 

 

Now that we possess a clear formula for the 

output of the system, we can refine the control input. 

Assume r is the desired vector for the system's output, 

and let 𝑅 =  [ 𝑟 𝑟 . . . 𝑟  ]𝑇 where there are n elements 

Now, we need to define the cost function to 

optimize it such that it reaches its minimum value. 

𝑃 = 𝔮||𝑅 − 𝑌||2
2  + 𝜔||𝑈||2

2 (40) 

 

𝑃 =  (𝑅 − 𝑌)𝑇𝑄(𝑅 − 𝑌)  + 𝑈𝑇𝑊𝑈 (41) 

 

𝑃 = (𝑅 − (𝐹𝑥(𝑘) + 𝐺𝑈))𝑇𝑄(𝑅 − (𝐹𝑥(𝑘)
+ 𝐺𝑈))  +  𝑈𝑇𝑊𝑈 

(42) 

 

𝑃 = (𝑅 − 𝐹𝑥)𝑇𝑄(𝑅 − 𝐹𝑥) − 2𝑈𝑇𝐺𝑇𝑄(𝑅
− 𝐹𝑥) + 𝑈𝑇(𝐺𝑇𝑄𝐺 +𝑊)𝑈 

(43) 

 

We apply the Newton-Raphson algorithm to find 

the control signal U such that the cost function P is 

minimized, ensuring optimal system performance. 

We need to calculate: 

𝛻𝑃𝑢 =
𝜕𝑃

𝜕𝑈
 = −2𝐺𝑇𝑄(𝑅 − 𝐹𝑥) + 2(𝐺𝑇𝑄 +𝑊)𝑈 

(44) 

𝐻(𝑃)  = 𝛻2𝑃𝑢 =
𝜕2𝑃

𝜕𝑈2
 = 2(𝐺𝑇𝑄𝐺 +𝑊) 

(45) 

Step 1 : Initialization of Control Signal: 

⚫ Start with the previously used control 

signal, denoted as 𝑢𝑛−1 . If there is no previous 

signal u, we initialize with the value 𝑢0 

⚫ Setting the initialized signal as 𝑢𝑖 with i = 

0 

Step 2 : Updating the new value using Newton - 

Raphson method : 

𝑢𝑖+1  =  𝑢𝑖 − (𝐻(𝑃)
−1)𝛻𝑃𝑢 (46) 

Step 3 : Check the stopping condition : 

During the execution of the algorithm, the loop will 

terminate if any of the following conditions are met: 

⚫ Convergence: The loop will stop when the 

result no longer changes significantly or when the 

gradient (or derivative) approaches 0 : 

||𝛻𝑃𝑢(𝑖)||2
2  < ∈ 

⚫ The number of iterations i does not exceed 

the specified number of iterations j : 𝑖 < j 
Step 4 : Store the value  

𝑥(𝑡 +△ 𝑡) = 𝐴𝑑𝑥(𝑡) + 𝐵𝑑𝑢) (24) 
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The value stored is the final value of U returned 

after checking the stopping condition, and this value is 

denoted as 𝑈𝑛 

The resultant U is a series of predicted signals U; 

we select the initial U from the column following a 

Receding Horizon Control strategy 

3.3. Designing a LQR Controller 

In a model with a clear mathematical equation, 

detailed system parameters, and a fixed operating point, 

LQR stands out as a preferred choice. Its prowess is 

showcased through its streamlined structure, efficient 

computation - especially with the tools provided by 

Matlab, and its flexibility in adjustments based on the 

weight matrix. This makes LQR a top pick for balancing 

robot control. And this approach has been employed in 

our study. 

The cost function is selected as 

𝐽 =∑(𝑥(𝑘)𝑇𝑄𝑥(𝑘)

∞

𝑡=0

+ 𝑢(𝑘)𝑇𝑅𝑢(𝑘) 
(47) 

 

where: Q is positive define matrix(or semi positive 

definite); R is positive definite matrix ; matrix K is 

optimized from the Riccati equation in the form: 

𝐾 = (𝑅 + 𝐵𝑑
𝑇𝑃𝐵𝑑)

−1𝐵𝑑
𝑇𝑃𝐴𝑑 (48) 

The control law u(t) is computed as 

𝑈 = −𝐾𝑥 = −(𝑅 + 𝐵𝑑
𝑇𝑃𝐵𝑑)

−1𝐵𝑇𝑃𝐴𝑑𝑥 (49) 

where P is the semi-positive definite solution of the 

Riccati algebraic equation:  

𝐴𝑑
𝑇𝑃 + 𝑃𝐴𝑑 + 𝑄 − 𝐴𝑑

𝑇𝑃𝐵𝑑(𝑅
+ 𝐵𝑑

𝑇𝑃𝐵𝑑)
−1𝐵𝑑

𝑇𝑑𝑃𝐴𝑑 = 0 

(50) 

 

where, Q matrix represents the control object, R matrix 

represents the control signal. 

The control law is computed using the function in 

Matlab as follows: 

𝐾 = 𝑑𝑙𝑞𝑟(𝐴𝑑, 𝐵𝑑 , 𝑄, 𝑅) (51) 

4. Result and Simulation 

In this simulation section, we will select initial 

value for the process as follows : 

 𝑥0 = [ 0.02 0 0.001 0.01] ; 
To simulate fairness, we set the parameters of the 

LQR and MPC controllers to be the same; the difference 

here is that the MPC uses prediction steps equal to np. 

The control parameter values selected for 

simulation are: 

• t=0.01 (conversion time from continuous domain 

to discrete domain) 

• Q =  [

1000 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]  

• R = 100  

• n_p = 200 ( Prediction Horizon ) 

Thence, simulation results are shown in Fig. 2 to Fig. 5. 

 
Fig. 2. Angle of Link1 (rad) 

 
Fig. 3. Angular velocity of Link1 (rad/s) 

 
Fig. 4. Angle of Link2 (rad) 
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Fig. 5 Angular velocity of Link2 (rad) 

Observation: 

✓ In Fig. 2, angle of link 1 under MPC controller has 

a settling time of 1s, which is faster compared to 

LQR at 3s. However, maximum oscillation 

amplitude of MPC is 0.09, which is larger than 

LQR at 0.065. 

✓ In Fig. 3, velocity of link 1 quickly approaches 0 

under MPC controller in 1s, faster than under LQR 

controller at 1.5s. 

✓ In Fig. 4, angle of Link 2 under MPC controller has 

a response time of 1.1s, faster than under LQR 

controller at 3.5s, and peak oscillation amplitude of 

MPC is 0.59, greater than LQR at 0.48. 

✓ In Fig. 5, velocity of Link 2 under MPC controller 

rapidly decreases to 0 after 1s, quicker than under 

LQR controller at 2s, and maximum oscillation 

amplitude of MPC’s velocity is 4.5, which is 

greater than under LQR at 4. 

5. Conclusion  

In the context of Acrobot, both MPC and LQR 

offer vital control solutions for positioning and 

maintaining the robot's balanced position. However, 

MPC exhibits notable advantages, including its ability to 

converge rapidly, especially in situations requiring 

precise and meticulous control. The uniqueness of MPC, 

with its mechanism of predicting and optimizing the 

system's behavior over time, not only aids it in achieving 

and sustaining a balanced state but also ensures stability 

and high performance during extended operation periods. 

Notably, its flexibility and adaptability to various models 

and systems make MPC an attractive choice in 

developing control strategies for robotic systems, like 

Acrobot, which demand high precision and reliability. 
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