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Abstract: Manuscript provides a key technology, namely Input-Output Feedback Linearization Associates with Linear 

Quadratic Regulator (for short, IOFLALQR). The objective of this research is to study the possibility of integrating two 

control strategies, which includes input-output feedback linearization technique (for short, IOFL) and linear quadratic 

regulator controller (for short, LQR), for stabilization control of Furuta pendulum system. Furuta pendulum system 

belongs to the group of under-actuated robot systems. In this work, structure of IOFLALQR, control implementation, 

comparison of IOFLALQR and conventional LQR are adequately studied and discussed. Simulation is completed in 

MATLAB/Simulink environment and experiment is done on real-time experimental setup. Numerical simulation and 

experimental results show that the IOFLALQR are implemented on Furuta pendulum successfully. Besides, results have 

been drawn for demonstrating IOFLALQR better than another classical method.   

Keywords: Input-output feedback linearization technique; Furuta pendulum; Linear quadratic regulator; Hybrid 

control; LQR control. 

 

1. Introduction 

Main purpose of combination two or three control 

strategies is to validate ability of integrating those 

techniques together for stabilization control, swing-up 

control and more. Many researches have been completed 

and shown to scientific community related to topic of 

combining control approaches. Diversity of combination 

of controllers have been presented such as a combination 

of sliding mode control (SMC) and LQR for stabilization 

control of Quadcopter [1], combining SMC with variable 

weights and LQR for trajectory tracking control problem 

for dual-motor autonomous steering system [2], sliding 

mode - disturbance observer (SMC-DO) combines with 

LQR technique for controlling flexible manipulators 

robot [3], controlling 3D overhead crane systems by 

using PID-SMC [4], adaptive back-stepping sliding 

mode [5], optimum fuzzy combination of decoupled 

SMC (DSMC) [6], a feed-forward controller combines 

with feedback controller for tracking control problem 

[7], adaptive radical basis function neural networks 

associates with proportional derivative-SMC method [8], 

adaptive fuzzy logic back-stepping methodology [9], 

combination of state feedback controller with RBF [10], 

SMC integrates with partial feedback linearization for a 

spatial ballbot [11]. In addition, combination of control 

strategies for swing-up problem have been studied. For 

instance, research of combining two strategies consists 

of deep reinforcement learning and local control for 

swinging up acrobot [12], feedback linearization - 

energy control method combination for swing-up control 

of rotary inverted pendulum (RIP) [13], an experiment of 

combination of on-off and SMC methods for swinging 

up a pendulum with two reaction wheels [14], Q-

learning and PID controllers combination for swinging 

up a nonlinear double inverted pendulum [15] and more. 

In this work, we develop an IOFLALQR from IOFL 

method. The new suggested control algorithm is 

qualified to stabilize a fourth-order under-actuated 

nonlinear Furuta pendulum system. Furuta pendulum 

system, named after Japanese Professor Katsuhisa 

Furuta, was invented at Tokyo Institute of Technology. 

The first study was completed on this system in 1992 

related to an application of pseudo-state feedback for 

swinging up an inverted pendulum [16]. Currently, 

Furuta pendulum or RIP, can find easily in laboratories 

related to control engineering.  Furuta pendulum is 

single-input multi-output system (SIMO). In this paper, 

we validate the proposed control scheme on this Furuta 

pendulum system, which is available at Control System 

Laboratory, HCMUTE. Many researches have been done 

on this system such that back-stepping control scheme 

[17], LQR technique [18], SMC [19], IOFL [20], PID-

Neural controller [21].  

Feedback linearization consists of two control 

strategies: IOFL and exact state-space linearization. In 

this paper, we focus on input-output linearization 

approach. This method transforms a certain class of 

nonlinear systems into linear systems by a proper 

coordinate change and a linearizing state feedback [22]. 

Detail of this control scheme can be found in [23]. LQR 

is able to overcome big disturbance is going on stability 

the system without reducing working performance and 
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can overcome disturbances that occurred previously 

[24].  

Main contribution of this paper are proposed new 

technology, namely IOFLALQR. This control strategy is 

conducted on both simulation and experimental setup. 

After that, we compare the state responses of output 

system between IOFLALQR and LQR technique.  

2. Furuta Pendulum System 

2.1. Mathematical Model 

Structure of RIP is shown in Fig. 1 

 
Fig. 1.  RIP 

Parameters of system are listed in Table 1. These 

parameters are measured from real model in Fig. 2. 

Table 1. System parameters 

Param

eter 
Value Unit Description 

m  0.027 kg Mass of pendulum 

1L  0.205 m Length of arm 

1J  0.0019 kgm2 Inertial moment of arm 

2L  0.328 m Length of pendulum 

2J  0.0046617 kgm2 Inertial moment of pendulum 

1C  0.025 N m s/rad Friction coefficient of arm 

2C  0.0017 N m s/rad Friction coefficient of pendulum 

tK  0.0531 Nm/A Torque constant of DC motor 

mR  11.7356 Ω Motor armature coil resistance 

g  9.81 m/s2 Gravitation acceleration 

1  na rad Angular position of arm 

2  na rad Angular position of pendulum 

e  na V Control input 

According to [25], equations of of RIP are presented: 
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Relationship of output τ and voltage e is given by 

2 1 1k k e = − +  (2) 

where 
1 t mk K R= ; 

2

2 t mk K R=   

The state-space equations of RIP are given below. 
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Linearized system operating around the 

equilibrium point is described as follows: 
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x Ax Be= +  (4) 
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From [26], we analyze the stability of system. Let 

0x = be an equilibrium point of nonlinear system  

( )x f x=  (5) 

where : D nf → is continuously differentiable and D 

is a neighborhood of the origin. Let  

0

( )

x

f x
A

x =


=


 (6) 

1. The origin is asymptotically stable if 

Re 0i   for all eigenvalues of A. 

2. The origin is unstable if Re 0i   for one or 

more of the eigenvalues of A. 
Accordingly, considering the nonlinear RIP system (3). 

RIP has an equilibrium point  0 0 0 0
T

x = . 

Now, we investigate the stability of this point using 

linearization.   4rank B AB = , it means that (A, B) 

is controllable. The eigenvalues of A are 

1 0 = ; 
2 5.6731 = ; 

3 6.7788 = − ; 
4 1.8732 = −  (7) 

With results in (7), there is one eigenvalue in the 

open right-half plane. Hence, the system is unstable at 

equilibrium point. 

2.2. Experimental Setup 

The real-time experimental setup is similar with 

the experimental setup [20]. 

 
Fig. 2.  Experimental setup 

Components consist of:  

      1) Pendulum link  

2) Arm link  

3) Encoder of pendulum link (500 RPM)  

4) DC motor TAMAGAWA SEIKI 24VDC - 30W  

5) Encoder of arm link (100 RPM)  

6) Micro-controller STM32F407VG Discovery board  

7) Driver IR2184 

8) Module UART CP2102  

9) Power supplier 24VDC-10A 

  3. Methodology 

3.1.  IOFL 

Principles of IOFL and application of IOFL for 

Furuta pendulum are mentioned in [20]. The calculation 

of control law bases on the state-space equation (3), 

which follows closely the designed controller in [20]. In 

this manuscript, we re-use the control law that 

mentioned in [20]. Schematic diagram of IOFL is shown 

in Fig. 3. 

 

Fig. 3. IOFL control scheme 

Control signal of this method is 

4
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where, 
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In addition, by using genetic algorithm (GA), the 

controlled parameters  1 2 3 4IOFLK K K K K=  are 

determined as follows: 

1 0.01K = ; 
2 82K = ; 

3 45.41K = ;
4 1.41K =  (9) 

3.2. LQR 

LQR controller is widely used in control 

engineering for stabilization control under-actuated 

system like inverted pendulum, pendubot, etc. General 

control law of LQR technique is  

LQR LQRu K x= −  (10) 

where,  129.6261 23.8921 5 6.0310LQRK = − −  

is calculated from weighing matrixes Q, R from GA 

searching, linear matrices A, B from (4) and system 

parameters in Table 1. These matrices are listed as below 

0 1 0 0

36.4628 0.0392 0 1.5058

0 0 0 1

23.3433 0.0251 0 2.9396

A

 
 

− −
 =
 
 

− − 

; 

0

1.1365

0

2.2186

B

 
 
 =
 
 
 

; 

1 0 0 0

0 0 0 0

0 0 10 0

0 0 0 0

Q

 
 
 =
 
 
 

; 0.4R =  

(11) 

3.3. IOFLALQR 

The advantage of LQR is simple structure and well-

stabilizing RIP around working point. However, the 

working space is just being around the working point. 

Differently, nonlinear control, such as IOFL method, has 

wide range of working due to flexible structure of 

controller and stability proved from Lyapunov criteria. 

Disadvantage of IOFL method is the difficulty in 

selecting function h(x) in (8). With the selection of 

h(x)=x1, only the angle of pendulum is guaranteed. The 

motion of arm is not kept closed to zero value. 

Following to [20], the arm cannot be kept closed to zero 

point. It moves around the working point, about 20 

degrees with sine form. Then, we propose a hybrid 

controller which can combine LQR and IOFL to stabilize 

RIP at working point as in Fig. 4. 

 
Fig. 4. Hybrid controller in controlling RIP 

The introduced RIP controller is based on a 

combination of input-output feedback linearization 

(IOFL) and linear quadratic regulator (LQR). Simulink 

schematic of representation of IOFLALQR method is 

drawn in Fig. 5. 

 
Fig. 5. Simulink model of IOFLALQR in controlling RIP  

 

4. Validation 

4.1. Numerical Simulation Results 

In this subsection, simulation results are shown in 

Fig. 6 and Fig. 7. Content of Fig. 6 is performance of 

state responses of output system by implementing 

IOFLALQR. In Fig. 6, from top to bottom, graphs are 

organized as follows: state response of angular position 

of pendulum 
2 (rad), state response of angular velocity 



 

 Input-Output Feedback Linearization Associates with Linear Quadratic Regulator 

 for Stabilization Control of Furuta Pendulum System 

Robotica  Management, 28-1 / 2023 

32 

of pendulum 2 (rad/s), state response of angular 

position of pendulum 
1  (rad), state response of angular 

velocity of pendulum 1  (rad/s), control input (V). 

Besides, the simulation results compare the state 

responses of RIP on 
2 , 2 , 

1 , 1 , and control input, 

respectively is shown in Fig. 7. State responses of 

system under IOFLALQR are described in blue and state 

responses of system under LQR are described in orange. 

Original points are set up for this simulation as follows:  

 0.1 0 0.1 0
T

x = (rad). 

Following first graph of Fig. 7, angle of 

pendulum is back to equilibrium point after 2 seconds, 

maximum overshot range of this state is [-0.03;0.1] 

(rad). In third graph, angle of arm stabilizes at “0” (rad) 

after 4 seconds and maximum overshoot range of this 

state is [-0.3;0.1] (rad). Angular velocity of pendulum 

and arm are depicted in 2nd and 4th graph of this figure. 

We can observe that system under IOFLALQR can 

stabilize at equilibrium point. Moreover, control input of 

RIP is described in 5th graph.  

Moreover, from Fig. 7, system with LQR 

controller has more significant overshoots in angular 

displacements of pendulum and arm. From simulation 

results, it can be observed that system with IOFLALQR 

has better performance, in terms of less overshoot, faster 

convergence in pendulum angle, and arm angle. In 

addition, control input of two controllers are also 

compared in last graph of Fig. 7.  

 
Fig. 6. State responses of output system under IOFLALQR method 
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Fig. 7. Comparison of state responses of output system under IOFLALQR and LQR techniques 

4.2. Experimental Results 

The main purpose of this subsection is to provide 

performance of RIP via experiment. Experiment results 

are drawn in Fig. 8. Contents of Fig. 8 are performance 

of state responses of output system by implementing 

IOFLALQR and conventional LQR techniques. In Fig. 

8, from the top to bottom, graphs are organized as 

follows: state response of angular position of pendulum 

2 (rad), state response of angular velocity of pendulum 

2 (rad/s), state response of angular position of 

pendulum 
1  (rad), state response of angular velocity of 

pendulum 1  (rad/s), control input (V). State responses 

of system under IOFLALQR are described in blue and 

state responses of system under LQR are described in 

orange. Following the first and third graph, pendulum 

angle has a minor oscillation around equilibrium point 

and better performance than another, while the angle of 

arm of system with IOFLALQR has better performance 

than conventional LQR. The angular velocity of arm and 

pendulum of system with IOFLALQR and conventional 

LQR are also captured in the 2nd and 4th graph of this 

figure. The comparison of voltage input is also provided 

in the last graph of Fig. 8.  
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Fig. 8. Comparison of state responses of output system with IOFLALQR and LQR techniques 

 

  5. Conclusion 

The purpose of this paper is to qualify the 

proposed stabilization control of nonlinear RIP system, 

namely IOFLALQR. The stabilizing control laws of RIP 

were designed, realized, and experimentally tested. 

IOFLALQR was designed based on combination of 

input-output feedback linearization (IOFL) and linear 

quadratic regulator (LQR). The results showed that the 

proposed control law guarantees the closed-loop system 

to be asymptotically stable. The experimental setup was 

built, and the controllers were realized. The designed 

control system demonstrated to be effective in 

simulation and experimental results. In the simulation 

studies, IOFLALQR control scheme yields a smaller 

pendulum angle deviation, a smaller arm angle 

deviation, and a smaller angular velocity of arm and 

pendulum deviation than conventional LQR. In the 

experimental work, IOFLALQR was applied 

successfully on physical experimental RIP. The future 

work can be realized such as validation of IOFLALQR 

on other under-actuated system like inverted pendulum, 

etc.  
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