

 Automated Unmapped Forest Path Navigation of Mobile Rover Using Neural Networks

Robotica Management, 26-2 / 2021

16

AUTOMATED UNMAPPED FOREST PATH NAVIGATION OF MOBILE

ROVER USING NEURAL NETWORKS

Nikola Jovičić

Union University, School of Computing

Knez Mihailova 6/VI, 11000 Belgrade, Serbia

E-mail: jovicicnikola@outlook.com

Abstract: In this paper, a system for autonomous navigation of unmapped forest paths in a simulation, along with a

new simulator for testing and training it is presented. For navigation, it uses a combination of path planning and deep

neural networks trained with imitation learning.

Keywords: imitation learning, forest, deep learning, simulation, path planning.

1. Introduction

Traversing forests and mapping them is a slow

and arduous process for people. They would have to

use and update a detailed map manually or with the

help of a GPS device, and if they had to additionally

collect some kind of data (humidity, temperature, road

condition) it would make the effort even greater.

Although there are already systems that use

neural networks to navigate forest paths, they are

usually focused on drones [1]. Most drones do not have

a flight autonomy of more than 30 minutes, so this

system is designed to work with a mobile rover that

runs on wheels or caterpillars. The mentioned drone

systems do not have planning capabilities, so it is not

possible to use them without human supervision. The

system in this paper is fully automated. It can go to a

given destination if it already knows the path to it, if it

doesn't know the path it will try to find the fastest one.

If a known path leads to an obstacle, the system will

update the internal map with new information, stop

using that path and try to find a new one.

2. Related Work

There are many approaches tackling forest trail

following, but most of them are based on low flying

aerial vehicles [1, 2]. There are not many complete

systems published on forest trail exploration [3, 8].

Most don’t do any autonomous exploration or planning

and only deal with mapping [4], or mapping tree

diameter [5] or forest restoration [6]. Ground vehicle

forest path following is similar to the task of self-

driving, therefore a neural network trained similar to

[7] is used in this paper. Compared to similar solutions

[8], this system does end-to-end path following without

any global map, trajectory or previous knowledge of

the environment, it uses data from only a single RGB

camera for training and inference, and is easy to train,

requiring only human driving data.

3. Simulator Overview

The first step in implementing this system is to

find a suitable simulator. Required simulator features

are:

- Realistic depiction of plants and trees

- Detailed camera setting

- Rover model and its manual control

- Ability to record location, control and camera

- Easy change of terrain, and driving routes

At the time of writing, no simulator meets at

least half of these criteria, so it was necessary to create

a new one. The simulator for this work was created in

the “Unity3D” video game editor. Wherever possible,

free plugins were used, for models of trees and plants,

earth and sky textures, as well as for the rover itself,

and the “ML-agents” package was used to

communicate with the python. (Fig. 1.)

Fig. 1. First person view inside the simulator.

To build the terrain, the built-in terrain tool was

used, in which two training maps for the rover were

made (Fig. 2.), one smaller with narrow paths and one

larger with spacious paths, along with a test map that

had a mix of both. Obstacles can be spawned on the

test map in the form of giant rocks at will.

Then the free “Vegetation Spawner” add-on was

used, which allows trees and plants to be spawned on

the map, but only in those parts that are not marked as

a path. Then a simple vehicle that would move around

Jovičić N.

Robotica Management, 26-2 / 2021

17

the map is needed. The free add-on “Realistic Buggy

Kit” was used for this, which offers several models of

buggy vehicles. A camera was added to the vehicle,

then it was scaled and inserted on the map as well as

set so that it could be controlled outside the engine

from the python with the help of the "ML-agents"

package.

Fig. 2. Training maps, left is the large map and right is

small, roads are brown, vegetation is green.

A game controller was used for control, through

which it is possible to send commands for turning left

and right, as well as for throttle. A controller was used

instead of a keyboard because with it it’s possible to

send analog commands, which enables more precise

vehicle control and therefore better training data. Data

collection was performed using a python script that

was attached to the simulator. It sent control

commands from the controller and in turn received

information about the current location and image of

what the vehicle's front camera sees, then it stored that

information on the hard drive (Fig. 3.)

Around 1 hour of human driving was collected

for training purposes. Driving data was collected

randomly on the map, the vehicle was driven through

each intersection at least several times so that each

direction of the intersection was explored at least once

in both directions. A lot of effort went into keeping the

vehicle in the middle of the road while driving because

the quality of the collected data will greatly affect the

quality of the model.

Fig. 3. Dataset generation system.

4. Dataset Preprocessing

For the neural network to be trained, the data

must first be processed into an appropriate format.

Steering wheel control is what the network

should predict from the input image. It is saved as a

number from -1 to 1, where -1 is the maximum left and

+1 is the maximum right.

What distinguishes imitation learning [9] from

supervised learning is the fact that the currently chosen

action affects the next action of the policy, leading to a

lack of adaptation to the test domain.

Fig. 4. Image cropping with example image crops from

the dataset.

To solve this problem, the collected images that

are 1024px wide and 432px high need to be cut into

three 700px wide images: left, right and central, and

the steering wheel control for these images must be

moved slightly to the right for the left image and

slightly to the left for the right image (Fig. 4.). This

way, if the camera is angled to the left or right of the

path, the neural network will learn to correct for this

behavior [7]. So that the network couldn’t learn to

distinguish which is the left, right, and center image,

the left, and right clippings are taken at random. The

left image is cropped randomly from 0-137 pixels on

the right while the right image is cropped by randomly

from 0-137 pixels on the left, the steering wheel

control is adjusted accordingly. Then the left, right, and

center images (along with their steering values) are

treated as separate elements of the dataset. They are

then resized to 350x216px and normalized with (1).

 I = I / 255 (1)

To control the neural network, it is necessary to

tell it where it needs to turn when it comes to an

intersection, left, right, or continue straight. The turn

command is constantly sent to the network, even when

it is not at the intersection, that way the system does

not have to be careful when issuing turn commands, it

is enough to command the network to turn at the next

intersection and the network will turn when it reaches

the intersection.

 Automated Unmapped Forest Path Navigation of Mobile Rover Using Neural Networks

Robotica Management, 26-2 / 2021

18

To make the network easier to train and later

control, it is also trained to predict whether it is

currently at an intersection, and that data is stored as 0

if not in an intersection and 1 if it is in an intersection.

To increase the presence of intersections in the dataset,

the data collected inside intersections is duplicated.

This was done because intersections were only present

in around 10% of the data.

5. Neural Network Architecture

The neural network was designed using the

standard Resnet18 [10] architecture, which is

commonly used to classify images (Fig. 5.).

Fig. 5. Neural network architecture.

The head has been replaced with a new head

that supports an additional input for directional control

and two outputs, one for steering control and the other

for indicating whether it is currently at an intersection.

Specifically, the last fully connected network layer is

replaced with four new fully connected layers, the first

has an output size of 30 numbers, the second is has an

output size of 10 numbers, and the third and fourth are

connected in parallel to the output of the second layer,

where the third layer has an output size of 3 numbers

and the fourth outputs 1 number. Thus, the third layer

predicts the steering value and the fourth layer predicts

whether the robot is currently at an intersection. The

input for selecting the direction of the turn is one-hot

encoded into zeros and ones of length 3 and scalar

multiplied by the output of the third layer, the resulting

sequence is summed and thus we get the steering value.

All fully connected layers use ReLu [11]

activations except the last layers. The intersection

indication layer uses the sigmoid and the pre-

multiplication layer uses linear activations. The

PyTorch [12] library was used for network definition

and training.

An Adam [13] optimizer with a 0.001 initial

learning rate was used for training, and a learning rate

scheduler was also used, which halves the learning rate

if the loss does not progress for 10 epochs. The batch

size was 64. The best model was trained for 26 epochs

on an NVIDIA 1080TI graphics card and it took

around 2 hours.

6. Using the neural network for navigation

If such a network were to be used for

navigation, the user would have to manually tell it

where to turn at each intersection. Also, since the

network does not have an internal state, it would not be

able to distinguish whether it has already been at a

location or if it has already discovered a shorter way to

get there. Therefore, it is necessary to have a control

system that allows the user to command the system

with a target point, remember which locations have

already been visited, as well as calculate the best way

to get to a location. For the purpose of this paper, we

used precise location data provided by the simulator,

but in the real world, a visual odometry system, GPS,

or a combination of these could be used [14]. The

control system consists of three states: neural driving,

automated driving, and turn around state (Fig. 6.).

6.1. Neural driving state

In this state, the neural network is used to

control the vehicle. In order to reach the destination,

turn commands are automatically given to the neural

network. The command given depends on the angle to

the goal, already visited locations, and vehicle

orientation. To discourage the vehicle from going to

already visited locations, the angles and distances

between the vehicle and all visited points are

calculated, the inverse distance values are saved in a

histogram according to the calculated angles. Then a

valley is found in the smoothed-out histogram that is

closest in angle to the angle between the vehicle and

the destination point. Thus, the vehicle will avoid

already visited paths. Since the neural network needs to

be told where to turn at the intersection, the obtained

value angle of rotation is discretized to the values -1, 0,

and 1 which corresponds to left, straight, and right.

This simple control scheme will not always find

the fastest route, but it will take the vehicle to its

destination at some point in time. While the vehicle is

moving, the system saves the location and creates a

graph of all the visited points. If the vehicle is in a

location that is already saved in the graph, the current

Jovičić N.

Robotica Management, 26-2 / 2021

19

path will be connected to the already visited one. If it is

in front of an obstacle, the vehicle enters the turn

around state.

The algorhitm for this state can be described as

(Alg. 1.)

Algorithm 1 Neural driving state

Input: goal coordinate G, current map graph M,

current image view from simulator I, current position

P, current rotation R, neural network N, simulator S

While P!=G: // While goal not reached

 rot_to_goal = rotation_between((P, R), G)

 all_distances = L2 norm(P-coordinates(M))

 inverse_distances = log2(map width – all_distances)

 all_rots = rotation_between((P, R), coordinates(M))

 hist = bincount(all_rots, weight=inverse_distances)

 smooth_hist = gaussian_filter1d(hist, sigma=6)

 extreme_locs = find_extreme_minima(smooth_hist)

 rot_to_goal = nearest(extreme_locs, rot_to_goal)

 command = 1 If rot_to_goal > 0.3,

2 If rot_to_goal < -3 Else 0

 I = preprocess_img(I)

 M.add_and_connect_node(P)

 predicted_steering = N(I, command)

 P, R, I, obstacle = S(predicted_steering)

 If obstacle: change_state(turn_around_state)

 End

End

6.2. Automated Driving State

Each time a new goal is issued, the system starts

in this state. It will create a path between the current

vehicle location and the point in the graph closest to

the target point. It will move along the path until it

reaches the end of the path or an obstacle. If it reaches

the end of the path and fails to reach the goal point, it

will go into the neural driving state. If it reaches an

obstacle, it will break the graph at that point and go

into the turn around state. The algorighm for this state

can be described as (Alg. 2.)

Algorithm 2 Automated driving state

Input: goal coordinate G, current map graph M,

current position P, current rotation R, simulator S

While P!=G: // While goal not reached

 start_point = argmin(L2 norm(coordinates(M) – P))

 end_point = argmin(L2 norm(coordinates(M) – G))

 path = M.shortest_path(start_point, end_point)

 For point in path: // Follow saved path

 rot_to_target = rotation_between((P, R), point)

 P, R, I, obstacle = S(rot_to_target)

 If obstacle:

 change_state(turn_around_state)

 If P!=G: // Reached end of explored path

 change_state(neural_network_drive)

 End

End

6.3. Turn Around State

This state gives commands to turn the vehicle

180 degrees from the current direction of travel. When

the U-turn is completed, the vehicle switches to the

state it wasn’t in before, if it was in the automated

driving state it will switch to neural driving state, and

vice-versa. This way the system will use the previously

unused state to reach the obstacle.

Fig. 6. Vehicle driving states

7. Experimental results

The rover was tested on a completely new map

(Fig. 7.) that it had never seen. It has been tested on

various configurations of obstacles and target points.

The test cases are divided into three difficulties, easy,

medium, and hard.

Easy cases include the rover going to a point on

the map without any obstacles, medium cases involve

going to a point with obstacles on the way, and

difficult cases involve going to multiple points one

after the other with obstacles that change their location

to simulate forest paths changing over time. All test

case results can be viewed at [15].

7.1. Easy Test Cases

For each of the cases from the figure (Fig. 7.),

the vehicle managed to get to the desired location.

Each case was run 10 times due to the randomness of

the simulator and the neural network. Only for case

number 2, the vehicle never managed to find the

optimal route, for the others it either always followed

the optimal route or more than half of the runs.

7.2. Medium Test Cases

As soon as obstacles are introduced the problem

becomes more complicated, the vehicle can no longer

use the fastest way to reach the destination but needs to

explore the map to find the right solution (Fig. 8.). In a

quarter of the test cases (16 out of 60), the vehicle

failed to find its way to the destination, either due to

 Automated Unmapped Forest Path Navigation of Mobile Rover Using Neural Networks

Robotica Management, 26-2 / 2021

20

moving around the map for too long or due to falling

off the road. Only for cases 3 and 5 did the model

manage to find its way to the goal each time. The

vehicle has been tested 10 times for each case (Tab.

1.).

Fig. 7. Test map for easy test cases, starting position is

the red arrow, forests are denoted in green and roads in

brown, blue dots are target points, numbers indicate the

test case number

Fig. 8. Test map for medium test cases, pink dots are

obstacles

Tab. 1.

Case number 1 2 3 4 5 6

Succes rate 30% 80% 100% 70% 100% 60%

7.3. Hard Test Cases

These cases test the entire system (Fig. 9.).

From its ability to navigate with the help of a neural

network to automated navigation when the map graph

is created, as well as its behavior when obstacles

appear on already explored parts of the map. Again,

blue dots are targets and pink dots are obstacles, each

test case is executed in two phases, “X.1” and “X.2”.

The system is run 20 times for each test case (Tab. 2.).

Fig. 9. Test map for hard test cases

Tab. 2.

Case number 1 2 3

Success rate of 1st phase 40% 85% 100%

Success rate of 2nd phase 40% 70% 100%

8. System Issues Discovered

In this chapter, we will address the most

common system issues and possible ways to correct

them.

8.1. Falling Off the Path

If the neural network fails to keep the vehicle on

the path, then it can have bad consequences. The

vehicle may collide with trees or rocks along the path

or fall completely off of it.

One way to avoid this issue is to train a better

neural network, using more data and/or a larger

network. Another way is to use a better sensor, such as

a depth camera, to give the network more information.

With the current network, this issue is not common, but

using the network in the real world would require a lot

more training data.

8.2. Turn Around State

Since the vehicle cannot turn in place, a U-turn

is implemented manually, this state doesn’t observe

obstacles or where the edge of the path is. Therefore, if

the road is narrow, the vehicle may fall off or hit an

obstacle or a tree next to the road.

The easiest way to solve this would be to equip

the vehicle with a single-channel LIDAR sensor with a

360-degree view around the vehicle, so the vehicle

could turn around in safely.

Jovičić N.

Robotica Management, 26-2 / 2021

21

8.3. Missing a Possible Turn

Sometimes it happens that the network has an

instruction to turn, but does not notice that a turn is

possible and therefore does not execute the instruction.

This issue could be avoided by using a camera that has

a wider angle, making it easier for the network to see

that turning is possible.

9. Conclusion

In the field of research of robotic vehicles on

four wheels, this paper has contributed a realistic

simulator of a forest environment, as well as a system

that successfully solves the scenarios of the simulator.

The system was tested in detail in the simulator on

different obstacle and target point scenarios. With the

help of the created system, it was shown how it is

possible to achieve simple mapping of forest roads

with a combination of classical methods of route

planning and methods of neural networks. The paper

describes the problems of the system as well as their

potential solutions. Future work would include using

this system in the real world. In order to do that, it

would be necessary to train the existing neural network

with images from the real world and add an odometry

system. The rest of the system would remain the same.

10. References

[1] Giusti A. et al.: "A Machine Learning Approach to

Visual Perception of Forest Trails for Mobile Robots,"

in IEEE Robotics and Automation Letters, vol. 1, no. 2,

pp. 661-667, July 2016.

[2] Smolyanskiy N. et al.: “Toward Low-Flying

Autonomous MAV Trail Navigation using Deep

Neural Networks for Environmental Awareness”,

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4241-4247, 2017.

[3] Ghamry, et al.: “Cooperative Forest Monitoring and

Fire Detection Using a Team of UAVs-UGVs”, in

ICUAS, 2016.

[4] Pierzchała M. et al.: “Mapping forests using an

unmanned ground vehicle with 3D LiDAR and graph-

SLAM”, in Computers and Electronics in Agriculture,

Volume 145, 2018.

[5] Chisholm R. et al.: “UAV LiDAR for below-

canopy forest surveys”, in Journal of Unmanned

Vehicle Systems 01(01):61-68, December 2013.

[6] Mohan M. et al.: “UAV-Supported Forest

Regeneration: Current Trends, Challenges and

Implications”, in Remote Sensing, 2021.

[7] Bojarski M. et al “End to End Learning for Self-

Driving Cars”, in arXiv preprint arXiv:1604.07316,

2016.

[8] Grigorescu S. “Embedded Vision for Self-Driving

on Forest Roads”. on CVPR, Workshop on Embedded

Vision, 2021.

[9] Osa T. et al “An algorithmic perspective on

imitation learning”, in Foundations and Trends in

Robotics, 2018.

[10] He K et al “Deep residual learning for image

recognition”, 2015.

[11] Agarap, A. F. “Deep Learning using Rectified

Linear Units (ReLU)”, 2018.

[12] Paszk A. et al “PyTorch: An Imperative Style,

High-Performance Deep Learning Library”, 2019.

[13] Diederik P. K., Ba J. “Adam: A Method for

Stochastic Optimization”, in 3rd International

Conference for Learning Representations, 2015.

[14] Wang K. et al “Approaches, Challenges, and

Applications for Deep Visual Odometry: Toward to

Complicated and Emerging Areas”, in IEEE

Transactions on Cognitive and Developmental

Systems, 2020.

[15] Jovičić N.: “Automated unmapped forest path

navigation of mobile rover using neural networks”,

video file, November 2021, retrieved from

https://youtu.be/nr6jNAzg1TQ

https://youtu.be/nr6jNAzg1TQ

