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Abstract: In this paper, a system for autonomous navigation of unmapped forest paths in a simulation, along with a 

new simulator for testing and training it is presented. For navigation, it uses a combination of path planning and deep 

neural networks trained with imitation learning. 
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1. Introduction 

 

Traversing forests and mapping them is a slow 

and arduous process for people. They would have to 

use and update a detailed map manually or with the 

help of a GPS device, and if they had to additionally 

collect some kind of data (humidity, temperature, road 

condition) it would make the effort even greater. 

Although there are already systems that use 

neural networks to navigate forest paths, they are 

usually focused on drones [1]. Most drones do not have 

a flight autonomy of more than 30 minutes, so this 

system is designed to work with a mobile rover that 

runs on wheels or caterpillars. The mentioned drone 

systems do not have planning capabilities, so it is not 

possible to use them without human supervision. The 

system in this paper is fully automated. It can go to a 

given destination if it already knows the path to it, if it 

doesn't know the path it will try to find the fastest one. 

If a known path leads to an obstacle, the system will 

update the internal map with new information, stop 

using that path and try to find a new one. 

 

2. Related Work 

 

There are many approaches tackling forest trail 

following, but most of them are based on low flying 

aerial vehicles [1, 2]. There are not many complete 

systems published on forest trail exploration [3, 8]. 

Most don’t do any autonomous exploration or planning 

and only deal with mapping [4], or mapping tree 

diameter [5] or forest restoration [6]. Ground vehicle 

forest path following is similar to the task of self-

driving, therefore a neural network trained similar to 

[7] is used in this paper. Compared to similar solutions 

[8], this system does end-to-end path following without 

any global map, trajectory or previous knowledge of 

the environment, it uses data from only a single RGB 

camera for training and inference, and is easy to train, 

requiring only human driving data. 

3. Simulator Overview 

 

The first step in implementing this system is to 

find a suitable simulator. Required simulator features 

are: 

- Realistic depiction of plants and trees 

- Detailed camera setting 

- Rover model and its manual control 

- Ability to record location, control and camera 

- Easy change of terrain, and driving routes 

At the time of writing, no simulator meets at 

least half of these criteria, so it was necessary to create 

a new one. The simulator for this work was created in 

the “Unity3D” video game editor. Wherever possible, 

free plugins were used, for models of trees and plants, 

earth and sky textures, as well as for the rover itself, 

and the “ML-agents” package was used to 

communicate with the python. (Fig. 1.) 
 

 
 

Fig. 1. First person view inside the simulator. 

 

To build the terrain, the built-in terrain tool was 

used, in which two training maps for the rover were 

made (Fig. 2.), one smaller with narrow paths and one 

larger with spacious paths, along with a test map that 

had a mix of both. Obstacles can be spawned on the 

test map in the form of giant rocks at will.  

Then the free “Vegetation Spawner” add-on was 

used, which allows trees and plants to be spawned on 

the map, but only in those parts that are not marked as 

a path. Then a simple vehicle that would move around 
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the map is needed. The free add-on “Realistic Buggy 

Kit” was used for this, which offers several models of 

buggy vehicles. A camera was added to the vehicle, 

then it was scaled and inserted on the map as well as 

set so that it could be controlled outside the engine 

from the python with the help of the "ML-agents" 

package.  
 

 
 

Fig. 2. Training maps, left is the large map and right is 

small, roads are brown, vegetation is green. 

 

A game controller was used for control, through 

which it is possible to send commands for turning left 

and right, as well as for throttle. A controller was used 

instead of a keyboard because with it it’s possible to 

send analog commands, which enables more precise 

vehicle control and therefore better training data. Data 

collection was performed using a python script that 

was attached to the simulator. It sent control 

commands from the controller and in turn received 

information about the current location and image of 

what the vehicle's front camera sees, then it stored that 

information on the hard drive (Fig. 3.) 

Around 1 hour of human driving was collected 

for training purposes. Driving data was collected 

randomly on the map, the vehicle was driven through 

each intersection at least several times so that each 

direction of the intersection was explored at least once 

in both directions. A lot of effort went into keeping the 

vehicle in the middle of the road while driving because 

the quality of the collected data will greatly affect the 

quality of the model. 
 

 
 

Fig. 3. Dataset generation system. 

 

 

4. Dataset Preprocessing 

 

For the neural network to be trained, the data 

must first be processed into an appropriate format. 

Steering wheel control is what the network 

should predict from the input image. It is saved as a 

number from -1 to 1, where -1 is the maximum left and 

+1 is the maximum right. 

What distinguishes imitation learning [9] from 

supervised learning is the fact that the currently chosen 

action affects the next action of the policy, leading to a 

lack of adaptation to the test domain.  
 

 
 

Fig. 4. Image cropping with example image crops from 

the dataset. 

 

To solve this problem, the collected images that 

are 1024px wide and 432px high need to be cut into 

three 700px wide images: left, right and central, and 

the steering wheel control for these images must be 

moved slightly to the right for the left image and 

slightly to the left for the right image (Fig. 4.). This 

way, if the camera is angled to the left or right of the 

path, the neural network will learn to correct for this 

behavior [7]. So that the network couldn’t learn to 

distinguish which is the left, right, and center image, 

the left, and right clippings are taken at random. The 

left image is cropped randomly from 0-137 pixels on 

the right while the right image is cropped by randomly 

from 0-137 pixels on the left, the steering wheel 

control is adjusted accordingly. Then the left, right, and 

center images (along with their steering values) are 

treated as separate elements of the dataset. They are 

then resized to 350x216px and normalized with (1).  
 

 I = I / 255                (1) 
 

To control the neural network, it is necessary to 

tell it where it needs to turn when it comes to an 

intersection, left, right, or continue straight. The turn 

command is constantly sent to the network, even when 

it is not at the intersection, that way the system does 

not have to be careful when issuing turn commands, it 

is enough to command the network to turn at the next 

intersection and the network will turn when it reaches 

the intersection. 
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To make the network easier to train and later 

control, it is also trained to predict whether it is 

currently at an intersection, and that data is stored as 0 

if not in an intersection and 1 if it is in an intersection. 

To increase the presence of intersections in the dataset, 

the data collected inside intersections is duplicated. 

This was done because intersections were only present 

in around 10% of the data. 

 

5. Neural Network Architecture 

 

The neural network was designed using the 

standard Resnet18 [10] architecture, which is 

commonly used to classify images (Fig. 5.). 
 

 
 

Fig. 5. Neural network architecture. 

 

The head has been replaced with a new head 

that supports an additional input for directional control 

and two outputs, one for steering control and the other 

for indicating whether it is currently at an intersection. 

Specifically, the last fully connected network layer is 

replaced with four new fully connected layers, the first 

has an output size of 30 numbers, the second is has an 

output size of 10 numbers, and the third and fourth are 

connected in parallel to the output of the second layer, 

where the third layer has an output size of 3 numbers 

and the fourth outputs 1 number. Thus, the third layer 

predicts the steering value and the fourth layer predicts 

whether the robot is currently at an intersection. The 

input for selecting the direction of the turn is one-hot 

encoded into zeros and ones of length 3 and scalar 

multiplied by the output of the third layer, the resulting 

sequence is summed and thus we get the steering value. 

All fully connected layers use ReLu [11] 

activations except the last layers. The intersection 

indication layer uses the sigmoid and the pre-

multiplication layer uses linear activations. The 

PyTorch  [12] library was used for network definition 

and training. 

An Adam [13] optimizer with a 0.001 initial 

learning rate was used for training, and a learning rate 

scheduler was also used, which halves the learning rate 

if the loss does not progress for 10 epochs. The batch 

size was 64. The best model was trained for 26 epochs 

on an NVIDIA 1080TI graphics card and it took 

around 2 hours. 

 

6. Using the neural network for navigation 

 

If such a network were to be used for 

navigation, the user would have to manually tell it 

where to turn at each intersection. Also, since the 

network does not have an internal state, it would not be 

able to distinguish whether it has already been at a 

location or if it has already discovered a shorter way to 

get there. Therefore, it is necessary to have a control 

system that allows the user to command the system 

with a target point, remember which locations have 

already been visited, as well as calculate the best way 

to get to a location. For the purpose of this paper, we 

used precise location data provided by the simulator, 

but in the real world, a visual odometry system, GPS, 

or a combination of these could be used [14]. The 

control system consists of three states: neural driving, 

automated driving, and turn around state (Fig. 6.). 

 

6.1. Neural driving state 

 

In this state, the neural network is used to 

control the vehicle. In order to reach the destination, 

turn commands are automatically given to the neural 

network. The command given depends on the angle to 

the goal, already visited locations, and vehicle 

orientation. To discourage the vehicle from going to 

already visited locations, the angles and distances 

between the vehicle and all visited points are 

calculated, the inverse distance values are saved in a 

histogram according to the calculated angles. Then a 

valley is found in the smoothed-out histogram that is 

closest in angle to the angle between the vehicle and 

the destination point. Thus, the vehicle will avoid 

already visited paths. Since the neural network needs to 

be told where to turn at the intersection, the obtained 

value angle of rotation is discretized to the values -1, 0, 

and 1 which corresponds to left, straight, and right. 

This simple control scheme will not always find 

the fastest route, but it will take the vehicle to its 

destination at some point in time. While the vehicle is 

moving, the system saves the location and creates a 

graph of all the visited points. If the vehicle is in a 

location that is already saved in the graph, the current 
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path will be connected to the already visited one. If it is 

in front of an obstacle, the vehicle enters the turn 

around state.  

The algorhitm for this state can be described as 

(Alg. 1.) 

 

Algorithm 1 Neural driving state 

Input: goal coordinate G, current map graph M, 

current image view from simulator I, current position 

P, current rotation R, neural network N, simulator S 

While P!=G: // While goal not reached 

    rot_to_goal = rotation_between((P, R), G) 

    all_distances = L2 norm(P-coordinates(M)) 

    inverse_distances = log2(map width – all_distances) 

    all_rots = rotation_between((P, R), coordinates(M)) 

    hist = bincount(all_rots, weight=inverse_distances) 

    smooth_hist = gaussian_filter1d(hist, sigma=6) 

    extreme_locs = find_extreme_minima(smooth_hist) 

    rot_to_goal = nearest(extreme_locs, rot_to_goal) 

    command = 1 If rot_to_goal > 0.3,  

2 If rot_to_goal < -3 Else 0 

    I = preprocess_img(I) 

    M.add_and_connect_node(P) 

    predicted_steering = N(I, command) 

    P, R, I, obstacle = S(predicted_steering) 

    If obstacle: change_state(turn_around_state) 

    End 

End 

 

6.2. Automated Driving State 

 

Each time a new goal is issued, the system starts 

in this state. It will create a path between the current 

vehicle location and the point in the graph closest to 

the target point. It will move along the path until it 

reaches the end of the path or an obstacle. If it reaches 

the end of the path and fails to reach the goal point, it 

will go into the neural driving state. If it reaches an 

obstacle, it will break the graph at that point and go 

into the turn around state. The algorighm for this state 

can be described as (Alg. 2.) 

 

Algorithm 2 Automated driving state 

Input: goal coordinate G, current map graph M, 

current position P, current rotation R, simulator S 

While P!=G: // While goal not reached 

    start_point = argmin(L2 norm(coordinates(M) – P)) 

    end_point = argmin(L2 norm(coordinates(M) – G)) 

    path = M.shortest_path(start_point, end_point) 

    For point in path: // Follow saved path 

        rot_to_target = rotation_between((P, R), point) 

        P, R, I, obstacle = S(rot_to_target) 

        If obstacle:  

            change_state(turn_around_state) 

    If P!=G: // Reached end of explored path 

        change_state(neural_network_drive) 

    End 

End 

6.3. Turn Around State 

 

This state gives commands to turn the vehicle 

180 degrees from the current direction of travel. When 

the U-turn is completed, the vehicle switches to the 

state it wasn’t in before, if it was in the automated 

driving state it will switch to neural driving state, and 

vice-versa. This way the system will use the previously 

unused state to reach the obstacle. 
 

 
 

Fig. 6. Vehicle driving states  

 

7. Experimental results 

 

The rover was tested on a completely new map 

(Fig. 7.) that it had never seen. It has been tested on 

various configurations of obstacles and target points. 

The test cases are divided into three difficulties, easy, 

medium, and hard. 

Easy cases include the rover going to a point on 

the map without any obstacles, medium cases involve 

going to a point with obstacles on the way, and 

difficult cases involve going to multiple points one 

after the other with obstacles that change their location 

to simulate forest paths changing over time. All test 

case results can be viewed at [15]. 

 

7.1. Easy Test Cases 

 

For each of the cases from the figure (Fig. 7.), 

the vehicle managed to get to the desired location. 

Each case was run 10 times due to the randomness of 

the simulator and the neural network. Only for case 

number 2, the vehicle never managed to find the 

optimal route, for the others it either always followed 

the optimal route or more than half of the runs. 

 

7.2. Medium Test Cases 

 

As soon as obstacles are introduced the problem 

becomes more complicated, the vehicle can no longer 

use the fastest way to reach the destination but needs to 

explore the map to find the right solution (Fig. 8.). In a 

quarter of the test cases (16 out of 60), the vehicle 

failed to find its way to the destination, either due to 
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moving around the map for too long or due to falling 

off the road. Only for cases 3 and 5 did the model 

manage to find its way to the goal each time. The 

vehicle has been tested 10 times for each case (Tab. 

1.). 
 

 
 

Fig. 7. Test map for easy test cases, starting position is 

the red arrow, forests are denoted in green and roads in 

brown, blue dots are target points, numbers indicate the 

test case number  
 

 
 

Fig. 8. Test map for medium test cases, pink dots are 

obstacles 
 

Tab. 1.  

Case number 1 2 3 4 5 6 

Succes rate 30% 80% 100% 70% 100% 60% 

 

7.3. Hard Test Cases 

 

These cases test the entire system (Fig. 9.). 

From its ability to navigate with the help of a neural 

network to automated navigation when the map graph 

is created, as well as its behavior when obstacles 

appear on already explored parts of the map. Again, 

blue dots are targets and pink dots are obstacles, each 

test case is executed in two phases, “X.1” and “X.2”. 

The system is run 20 times for each test case (Tab. 2.). 

 

 
 

Fig. 9. Test map for hard test cases 

 

Tab. 2.  

Case number 1 2 3 

Success rate of 1st phase 40% 85% 100% 

Success rate of 2nd phase 40% 70% 100% 

 

8. System Issues Discovered 

 

In this chapter, we will address the most 

common system issues and possible ways to correct 

them. 

 

8.1. Falling Off the Path 

 

If the neural network fails to keep the vehicle on 

the path, then it can have bad consequences. The 

vehicle may collide with trees or rocks along the path 

or fall completely off of it. 

One way to avoid this issue is to train a better 

neural network, using more data and/or a larger 

network. Another way is to use a better sensor, such as 

a depth camera, to give the network more information. 

With the current network, this issue is not common, but 

using the network in the real world would require a lot 

more training data. 

 

8.2. Turn Around State 

 

Since the vehicle cannot turn in place, a U-turn 

is implemented manually, this state doesn’t observe 

obstacles or where the edge of the path is. Therefore, if 

the road is narrow, the vehicle may fall off or hit an 

obstacle or a tree next to the road. 

The easiest way to solve this would be to equip 

the vehicle with a single-channel LIDAR sensor with a 

360-degree view around the vehicle, so the vehicle 

could turn around in safely. 
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8.3. Missing a Possible Turn 

 

Sometimes it happens that the network has an 

instruction to turn, but does not notice that a turn is 

possible and therefore does not execute the instruction. 

This issue could be avoided by using a camera that has 

a wider angle, making it easier for the network to see 

that turning is possible. 

 

9. Conclusion 

 

In the field of research of robotic vehicles on 

four wheels, this paper has contributed a realistic 

simulator of a forest environment, as well as a system 

that successfully solves the scenarios of the simulator. 

The system was tested in detail in the simulator on 

different obstacle and target point scenarios. With the 

help of the created system, it was shown how it is 

possible to achieve simple mapping of forest roads 

with a combination of classical methods of route 

planning and methods of neural networks. The paper 

describes the problems of the system as well as their 

potential solutions. Future work would include using 

this system in the real world. In order to do that, it 

would be necessary to train the existing neural network 

with images from the real world and add an odometry 

system. The rest of the system would remain the same. 
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