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Abstract: Pendubot is a popular inverted pendulum model in control engineering. Usually, two-link pendubot is used 

due to its simplicity in mechanical structure and its nonlinear characteristic. The challenge of control can be increased 

by adding more links to system. In this paper, balancing five-link pendubot at TOP position and pulse-tracking this 

model are tested through simulation. The control algorithm LQR is in survey in this research. The simulation shows that 

system is stabilized well at working point and it is also control well in tracking a pulse trajectory. 
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  1. Introduction 

Stability for the inverted pendulum is a familiar 

problem in automatic control. However, most studies only 

stop at low-order pendulum such as one-order as in [1], 

two-order as in [5], [6], [7] or three-order as in [8], [9]. 

However, there are not many studies on inverted pendulums 

of the four-order or higher. Simon Lam and Edward J. 

Davison [2] have given the corresponding equations for the 

n-degree pendubot – a kind of multi-link inverted 

pendulum- but have not yet given a corresponding control 

algorithm. Igor Ananyeski and Nikolay Anokhin [3] have 

successfully controlled the multi-level system, but the 

results are only at the three-order and have not shown the 

results at many different working points.  

Based on the basis of the multi-degree inverted 

pendulum model of [2] and [3], the authors consider the 

case of a four-link inverted pendulum and study to build 

an LQR controller for the above system. If the system 

parameters and mathematical equations are clearly 

determined, the stable control of the LQR algorithm will 

be ensured through mathematics from solving Ricatti 

equations [5]. In addition, unlike PID control which is 

usually only good for SISO systems, LQR algorithm can 

control MIMO, SIMO systems ... if the condition of 

control, which is mentioned in (11), matrix is satisfied. 

Some authors in [6], [8] have controlled the inverted 

pendulum systems at lower order of quadratic and triple 

order. And through the simulations of this paper, the 

authors show that the five-link pendubot (5L-P) can still 

be controlled well through the optimal control algorithm. 

The next sections of the paper are presented in the 

following order: Section II presents the mathematical 

model of the 5L-P and the linearization of the system. 

Section III presents how to build a general LQR controller 

and apply that algorithm to a 5L-P. Section IV presents 

the simulation results of the proposed algorithm for 5L-P. 

The conclusion is presented in Section V of the paper. 

  2. Mechanical Structure 

Multi-link pendubot is shown in Fig.1 [9]. Only one 

control input is the torque affecting the lowest-order 

link. This signal indirectly controls other highr-order 

links. The TOP position (Fig. 2) is the most popular 

working point of this model. 

 
Fig. 1. Model of a multi-link pendubot – one kind of 

multi-link inverted pendulum 

 
Fig. 2. Fully vertical work point (TOP position) 
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According to document [2], we have mathematical 

equations describing n-link pendubot system with v link: 
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Working with a 5L-P, we have 5v = . Then, through 

setting the state variable as 

 1 2 3 4 5 6 7 8 9 10

T
x x x x x x x x x x x=
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and calculating Matlab, we put (1) in the form: 
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Then, we continue linearizing system around the static 

working point: 

 0 0 0 0 0 0 0 0 0 0 0
T

x =  (7) 

At this point, (6) becomes the form: 
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where linear matrixes are: 
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3. Controller Designing 

The optimal controller (LQR) is shown through 

the following diagram: 

 
 Fig. 3. Diagram of an LQR controller for a five-link 

pendubot 

If control matrix MC=[B AB A2B A3B]T satisfies 

( )Crank M n=  (11) 

, the system is controllable. 

In which, matrix K is calculated from solving 

Ricatti equations [4] through the availability of matrices 

A, B and the selection of weighted matrices Q, R: 
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The target function selected are:             

( )
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(13) 

Through solving (12) to get solution P, we 

continue to find the feedback matrix K through the 

expression: 
1

TK B PB R BPA
−

 = +   
             (14) 

 

Here, the article uses the Matlab tool to solve the 

Ricatti equation through the command:  

( , , , )K lqr A B Q R=  (15) 

1

2

10

0 0 0

0 0 0

0 0 0

0 0 0

q

q
Q

q

 
 
 =
 
 
 

; R r=        
 

(16) 

Q, R are weighing matrixes. The values qi are 

positive, corresponding to the adjustment of the variables 

xi. The choice of qi is based on consideration of the 

stability of the corresponding variable xi. To prioritize 

which parameter is stable, we increase the weight 

corresponding to that variable. However, increasing the 

overall weight will make no priority variable stable. 

The weighing matrix R in this case is only a 

positive real number because the system has only one 

input variable u. The larger R-matrix corresponds to the 

higher priority given to stabilizing the control input 

signal. Reducing R will cause the control signal to 

oscillate more. However, an excessively increasing R 

will cause the control signal to change too slowly to 

respond to the system. 
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System parameters ar chosen as: 

1 2 3 4 5 0.04( )m m m m m kg= = = = =
; 

1 2 3 4 5 0.2( )l l l l l m= = = = =  
 

(17) 

From (9), (10), linear matrixes are: 
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(19) 

With matrices A, B as in (18) and (19), and from 

Mc in (11), we calculate: 

( ) 8Crank M =  (20) 

Thus, there exists a feedback matrix K to control 

system variables to a given working point. 

In the matrix Q, R in (16), we choose: 

1 500q = ; 
2 40q = ; 

3 600q = ;
 4 5q = ;

 

5 300q = ;
 6 500q = ;

 7 400q = ;
 8 800q = ;

 

9 200q = ; 
10 300q = ; 800r =        

(21) 

Using Matlab to calculate the matrix K, we have: 

K = [1.2455 1.1025 -35.116 0.6841 281.7628 

9.6384 -614.8758 -32.2761 401.0518 35.4611]                          

 (22) 

 

4. Simulation Results 

We choose the initial values as follows: 

 _ 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0x init =

 4.1. Case 1: balancing at equilibrium point 

 
Fig. 4. Deflection angle of link 1 (rad) 

 
Fig. 5. Deflection angle of link 2 (rad) 

 
Fig. 6. Deflection angle of link 3 (rad) 

 
Fig. 7. Deflection angle of link 4 (rad) 

 
Fig. 8. Deflection angle of link 5 (rad) 

 
Fig. 9. Torque impact on link 1 (Nm) 

We see that the controller with the K in (22) with 

the weighing matrices Q, R in (16) gives very good 

control results. All links move to equilibrium position 

(all links are in the vertical position upwards) with less 

than 3 seconds. The torque on link 1 is also quickly 

stable to 0 after less than 3 seconds, ie no control torque 

is required when the pendulum is in stable equilibrium. 
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4.2. Case 2: The working point changes corresponding 

to the change of the set value of the angle 
1  in Fig. 16. 

In this section, 
1 ref

 is trajectory of link 1 that we 

expect the angle of link 1 to follow. 

 
Fig. 10. Controller diagram with variable work point 

 
Fig. 11. Deflection angle of link 2 (rad) 

 
Fig. 12. Deflection angle of link 3 (rad) 

 
Fig. 13. Deflection angle of link 4 (rad) 

 
Fig. 14. Deflection angle of link 5 (rad) 

 
Fig. 15. Torque impact on link 1 (Nm) 

 
Fig. 16. Deflection angle of link 1 (rad) 

Values 
2 ;

3 ;
4 ;

5  stabilizes quickly every 4s after 

the placement is changed. However, the value does not 

follow the set value when the value is too far from zero 

because when building the LQR controller, we linearize the 

system around the working point, the built-in K number also 

ensures good stability around the equilibrium point. 

Therefore, when the working point is no longer in position, 

the controller can no longer guarantee the system to function 

properly. However, through Figures 11 to 16, we realize that 

the system is still stable if the set value of the angle 
1  is not 

too much 4( )
8

rad



.

 

5. Conclusion 

The paper presented how to successfully build an 

optimal LQR controller for a 5L-P. Simulation results 

show that: the system responds quickly to the vertical 

equilibrium position and if the set value of the actuator 

arm (link 1) is not too far from the vertical position, the 

system remains stable. By this action, we can control 

system tracking pulse trajectory. 
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